• Title/Summary/Keyword: Anterior tibialis

Search Result 436, Processing Time 0.03 seconds

Effects of 17-DMAG Administration on Autophagy Flux in Mouse Skeletal Muscle (17-DMAG이 마우스 골격근에서 autophagy flux에 미치는 영향)

  • Ju, Jeong-sun;Lee, Yoo-Hyun
    • Journal of Life Science
    • /
    • v.26 no.4
    • /
    • pp.387-397
    • /
    • 2016
  • The purpose of this study was to determine if heat shock proteins are involved in autophagy in skeletal muscle. We used the autophagy flux strategy, which is an LC3 II/p62 turnover assay conducted with and without an autophagy inhibitor, to determine whether 17-DMAG (an Hsp90 inhibitor/Hsp72 activator) stimulates autophagy in skeletal muscle. We treated C2C12 cells with 17-DMAG (500 nM) for 24 hr with and without the autophagy inhibitor (Bafilomycin A1, 200 ng/ml), and we injected C57BL/6 mice i.p. with 17-DMAG (10 mg/kg) daily for 7 days with and without colchicine as an autophagy inhibitor (0.4 mg/kg/day, administered on the last 2 days). C2C12 myotubes and tibialis anterior muscles were harvested for analysis of mTOR-dependent autophagy signaling pathway proteins and autophagic marker proteins (p62 and LC3 II) by Western blot analysis. The blots showed that 17-DMAG upregulated hsp72 and decreased Akt protein levels and S6 phosphorylation in C2C12 cells. However, an in vitro autophagic flux assay demonstrated that 17-DMAG did not increase LC3 II and p62 protein concentrations to a greater extent than Bafilomycin A1 treatment alone. Similarly, 17-DMAG increased Hsp72 protein levels and decreased the expression of Akt and the phosphorylation of S6 in mouse skeletal muscle. However, unlike the response seen in C2C12 myotubes, the p62 protein levels were significantly decreased in 17-DMAG-treated mouse skeletal muscle (~50%; p<0.05). The LC3 II protein levels in 17-DMAG-treated mice were increased ~2-fold more when degradation was inhibited by colchicine (p<0.01). This suggests that 17-DMAG stimulates basal autophagy in skeletal muscle but is not found in C2C12 myotubes.

Ground Reaction Force and Muscle activity in Children with Down Syndrome during Vertical Jump (다운증후군 아동의 수직점프 동작 수행 시 지면반력과 근육활동의 규명)

  • Yu, Yeon-Joo;Lim, Bee-Oh;Kim, Suk-Bum;Nam, Ki-Jung;Choi, Bum-Kwon;Kim, Min-Hoe
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.1
    • /
    • pp.107-115
    • /
    • 2008
  • The purpose of this study was to investigate muscle activity and vertical ground reaction force(F) in children with Down syndrome(DS) during vertical jump. Six DS and one healthy child performed vertical jump. Four muscles(Biceps femoris, Rectus femoris, Tibialis anterior & Gastrocnemius) and F were analyzed. Gastrocnemius in DS showed lower muscle activity in a propulsive phase. Impulse during 0.3sec before toe-off in DS displayed lower value than that in the healthy child. The second peak of F in DS occurred later than that in the healthy child, so DS performed landing with their knee more flexed. The first and second peak of F and loading rate to the second peak of F in DS showed lower value than those in the healthy child. Therefore, DS might have lower ability to absorb the force while landing from a vertical jump.

The Effects of Shoes with Curved Out-Sole on the Variations of Static Posture and EMG of Calf (유선형 신발이 정적 자세변화 및 하퇴근전도에 미치는 효과)

  • Shin, Hak-Soo;Eun, Seon-Deok;Yu, Yeon-Joo
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.1
    • /
    • pp.245-253
    • /
    • 2008
  • The purpose of this study was to analyze the effects of shoes with curved out-sole on the posture variation and its control strategy. At first, Target shoes(s) was made by evaluating the static postures of 7-female university students via 'New York State Posture Test' on shoes which made the relative angle between foot surface and ground surface of shoe change. At second, we evaluated muscle activity for 30-female university students(10 persons-3 groups) on shoes which were s(target), m shoes with curved out-sole and n shoes with flat out-sole. 1. The posture scores on New York State Posture Test were statistically different according to the relative angle changes, and the best angle for score was -7 degree but, the scores charts were like two humped camel at -2, -7degree. we made the shoe with -7 degree and curved out-sole. 2. s, m shoes with curved out-sole had graded muscle activities but, static posture on bare foot, there were the graded activity on gastrocnemius for s shoes and tibialis anterior for m shoes, but on shoes, only Gastrocnemius for s shoes.

The Evaluation of Lower Extremity Muscles in Combat shoes Custom Foot Orthotics (전투화 맟춤형 발보장구 착용 시 하지 근육 활동의 평가)

  • Suh, Sung-Hyeok;Kim, Ro-Bin;Cho, Young-Jae
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.2
    • /
    • pp.115-124
    • /
    • 2008
  • The purpose of this study was to examine the effects of customized foot orthotics on lower extremity muscle activity and fatigue during march in combat boots. Four volunteers with normal foot and five volunteers with excessive pronation foot among soldiers on service were fitted with foot orthotics. The electromyography signal from activity of low extremity muscles were collected with surface electromyography device during walking on the treadmill. The walk on the treadmill was performed with a speed of 4.5 km/h. The experiment design for reseach wes composed two experimentation. The first experiment was to examine the muscle activity of lower extremity between normal foot and excessive pronator foot during march. The second experiment was to examine the muscle activity of lower extremity between wearing orthotics and no wearing orthotics. These data were analyzed by the averaged integral EMG and the mean power frequency. The analyzed results were compared by independent T-test method and paired T-test method of SPSS(windows version 12.0). The result of the study were the muscle activity on pronator foot tend to increase during march but a statistically significant increase in muscle fatigue of vastus lateralis and fibularis longus. A statistically significant decrease in muscle activity of anterior tibialis and fibularis longus and fatigue occurred using the customized foot orthotics in volunteers with excessive pronation foot compared to volunteers with normal foot. Clinically, the application of orthotics for the soldiers with excessive pronation foot appears to delay muscle fatigue and prevent from variable foot injuries. This may contribute to enhancing fighting efficiency.

Lateral Supramalleolar Fasciocutaneous Island Flap for Reconstruction of the Foot and Ankle Soft Tissue Defect (외측 복사뼈 상부 근막-피부 섬피판을 이용한 발 및 발목관절 연부조직 결손의 재건)

  • Choi, Jae Hoon;Kim, Nam Gyun;Choi, Tae Hyun;Lee, Kyung Suk;Kim, Joon Sik
    • Archives of Plastic Surgery
    • /
    • v.33 no.6
    • /
    • pp.784-788
    • /
    • 2006
  • Purpose: For the reconstruction of the ankle joint as well as the soft tissue defect in the distal lower leg, a free flap or a local flap has been used, and because of the condition of patients, if a complex microvascular surgery under general anesthesia could not be performed, it could be reconstructed by using the distally based lateral supramalleolar fascio-cutaneous island flap using the perforating branch of the peroneal artery in the ankle area. Methods: The study subjects were 4 male patients between 53 years and 73 years of age. 2 cases were tissue defect in the medial malleolus area due to systemic diseases such as gouty arthritis accompanied traffic accident, diabetes mellitus foot, atherosclerotic obliterans, etc., 1 case was the defect in the pretibia area, and 1 case was the defect underneath the lateral malleolus, which was reconstructed by the distally based lateral supramalleolar fascio-cutaneous island flap. The donor area was the skin harvested from the groin, and the full thickness skin graft was performed. The size of the flap varied from $4{\times}3cm$ to $9{\times}6cm$. As the flap border, the medial side was to the tibialis anterior tendon, the lateral side was to the fibula crest, and the proximal area was less than the fibula size. Results: The consequence is that, in total 4 cases, the congestion in the flap began from 12 hours after the surgery, and the progression of congestion was ceased on the 5th day after the surgery, and finally epidermal bulla and sloughing, partial necrosis was developed. After the end of necrosis, the defect area was reconstructed successfully by the second full thickness skin graft. Conclusions: Although the distally based lateral supramalleolar fascio-cutaneous island flap has the shortcoming of requiring the second skin graft, it has the advantages that it does not require a long complex microsurgery, the flap itself is thin, it is similar to the color of the skin in the recipient area, and it does not leave a big scar in the donor area. Therefore, it is thought that for the cases who could not undergo a long complex surgery due to systemic diseases or the cases of patients whose condition of the recipient area is not suitable for microsurgery, the lateral supramalleolar fascio-cutaneous island flap is very useful for the reconstruction of the distal lower leg and the ankle joint area.

The Effects of Pulsator Washing Machine on Joints Torques and Muscles Strengths Considering Height of Outside Machine and Depth of Inside Drum for Average Height Users (투입구 높이 및 내부 드럼 깊이를 고려한 펄세이터 세탁기 사용시 평균신장 사용자의 관절 토크 및 근력에 미치는 영향)

  • Kim, Seong Guk;Cho, Young Kuen;Lee, Nam Gi;You, Joshua Sung Hyun;Lim, Dohyung;Kim, Han Sung;Ko, Chang-Yong
    • Journal of Biomedical Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.184-193
    • /
    • 2012
  • Many studies have reported that housework done using household appliances may affect biomechanical characteristics of the musculoskeletal system. The purpose of this study was to investigate the effects of housework done using a pulsator washing machine on joints and muscles. We calculated joint torques and muscle strengths on the basis of an experimental/virtual three-dimensional motion analysis for six healthy females using the pulsator washing machine at different heights (H) and depths (D) of the inside drum (H (mm){\times}D (mm), Trial1: $962.5{\times}609.4$, Trial2: $962.5{\times}624.4$, Trial3: $982.5{\times}644.4$, Trial4: $995.5{\times}642.4$, Trial5: $1015.5{\times}677.4$). The joint torques and muscle strengths tended to be considerably different during torso flexion in the sagittal plane for all the trials. The maximum joint torques for the thoracic vertebra, left ankle, and right shoulder measured in Trial4 were significantly higher than those measured in the other trials (p < 0.05); in addition, those for the thoracic vertebra and both ankles measured in Trial5 were significantly higher than those measured in the other trials (p < 0.05). The maximum muscle strengths for the left trapezius muscle and both tibialis anterior muscles measured in Trial5 were significantly higher than those measured in the other trials (p < 0.05). These results indicate that housework done using a pulsator washing machine may affect joint torques and muscle strengths, and these effects are dependent on the height and/or depth of the inside drum of the pulsator washing machine.

The Effects of Wearing Roller Shoes on Muscle Activity in The Lower Extremity During Walking (롤러신발과 일반신발의 착용 후 보행 시 하지근의 근전도 비교)

  • Chae, Woen-Sik;Lim, Young-Tae;Lee, Min-Hyung;Kim, Jung-Ja;Kim, Youn-Joung;Jang, Jae-Ik;Park, Woen-Kyoon;Jin, Jae-Hong
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.137-148
    • /
    • 2006
  • The purpose of this study was to compare muscle activity in the lower extremity during walking wearing jogging and roller shoes. Twelve male middle school students (age: 15.0 yrs, height 173.7 cm, weight 587.7 N) who have no known musculoskeletal disorders were recruited as the subjects. Seven pairs of surface electrodes (QEMG8, Laxtha Korea, gain = 1,000, input impedance >$1012{\Omega}$, CMMR >100 dB) were attached to the right-hand side of the body to monitor the rectus femoris (RF), vastus medialis (VM), vastus lateralis (VL), biceps femoris (BF), tibialis anterior (TA), and medial (GM) and lateral gastrocnemius (GL) while subjects walked wearing roller and jogging shoes in random order at a speed of 1.1 m/s. An event sync unit with a bright LED light was used to synchronize the video and EMG recordings. EMG data were filtered using a 10 Hz to 350 Hz Butterworth band-passdigital filter and further normalized to the respective maximum voluntary isometric contraction EMG levels. For each trial being analyzed, five critical instants and four phases were identified from the recording. Averaged IEMG and peak IEMG were determined for each trial. For each dependent variable, paired t-test was performed to test if significant difference existed between shoe conditions (p<.05). The VM, TA, BF, and GM activities during the initial double limb stance and the initial single limb stance reduced significantly when going from jogging shoe to roller shoe condition. The decrease in EMG levels in those muscles indicated that the subjects locked the ankle and knee joints in an awkward fashion to compensate for the imbalance. Muscle activity in the GM for the roller shoe condition was significantly greater than the corresponding value for the jogging shoe condition during the terminal double limb stance and the terminal single limb stance. Because the subjects tried to keep their upper body weight in front of the hip to prevent falling backward, the GM activity for the roller shoe condition increased. It seems that there are differences in muscle activity between roller shoe and jogging shoe conditions. The differences in EMG pattern may be caused primarily by the altered position of ankle, knee, and center of mass throughout the walking cycle. Future studies should examine joint kinematics during walking with roller shoes.

The Comparative Analysis of EMG Activities on the Lower Limb Muscles during Power Walking and Normal Walking (파워보행과 일반보행 시 하지근의 근전도 비교 분석)

  • Gi, Se-Joon;Chae, Woen-Sik;Kang, Nyeon-Ju;Jang, Jae-Ik;Yoon, Chang-Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.4
    • /
    • pp.125-133
    • /
    • 2008
  • The purpose of this study was to compare EMG activities on the lower limb muscles during power walking and mormal walking. Seventeen subjects who have no known musculoskeletal disorders performed walking exercise at a cadence of 140 beats/min. After surface electrodes were attached to rectus femoris, vastus medialis, vastus lateralis, biceps femoris, tibialis anterior, medial gastrocnemius, averageed IEMG and peak IEMG, were measured. The result showed that the power walking did influence the averaged IEMG and peak IEMG. The EMG activity of the quadriceps during power walking was significantly higher than the corresponding values in normal walking during most phases. The averaged IEMG and peak IEMG of gastrocnemius muscles at the end of the double limb stance increased significantly when going from normal walking to power walking. The results indicate that power walking had greater effect on EMG activities on the lower limb muscles and demonstrate that the wide range of benefits can be obtained from power walking in respect to health and fitness. This study suggests that power walking has the potential to improve aerobic fitness and assist in weight management.

Electromyographic Analysis of a Uphill Propulsion of a Bicycle by Forward.Backward Pedaling (정.역구동 페달링에 따른 자전거 등판 시의 근전도 분석)

  • Shin, Eung-Soo;Kim, Hyun-Joong
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.4
    • /
    • pp.171-177
    • /
    • 2008
  • This work intends to investigate the effects of pedaling directions on the muscle actions during the bicycle's uphill propulsion. A test rig was developed that consists of a bicyle with a special planetary geartrain, a height-adjustable treadmill, a rear-wheel support and a magnetic brake. A three-dimensional motion analysis was performed for measuring kinematic characteristics of the forward backward pedaling and the electromygraphy(EMG) measurements were simultaneously performed for estimating the muscle actions of the leg. In this work, four muscles are considered including Gastrocnemius muscle(GM), Vastus lateralis(VL), Tibialis anterior(TA) and Soleus(SOL) while the uphill slope is varied from $0^{\circ}$ to $6^{\circ}$. Raw EMG signals were first processed through the root-mean-square(RMS) averaging and then ensemble curves were derived by averaging the EMG RMS envelopes over 50 consecutive cycles. Results show that both the kinemactic characteristics and the muscle actions are significantly affected by the pedaling direction. The crank speed of the forward pedaling is higher but the difference in speed is reduced as the slope is increased. The ensemble curves of the :ac signals clearly exhibit some differences in their patterns, peak values and the corresponding locations with respect to the crank angle. The peak values of most EMG signals are higher for the forward pedaling regardless of the slope magnitude. However, the averages of the EMG signals are not observed to have a similar relationship with the pedaling direction, which seems to be affected by several factors such as less experience of the participants' backward pedaling. inappropriate bicycle design for the backward pedaling. These limitations will be further considered in future work.

The Effect of Types of Weight-Bearing Surfaces on Muscle Activities of Lower Limbs and Weight Distribution During Semi-Squat Movement of Patients With Hemiplegia (편마비 환자의 반 쪼그려 앉기(semi-squat)동작 시 양하지 지지면의 형태가 하지 근활성도와 체중분포에 미치는 영향)

  • Yang, Yong-Pil;Roh, Jung-Suk
    • Physical Therapy Korea
    • /
    • v.19 no.1
    • /
    • pp.28-36
    • /
    • 2012
  • This study used an unstable platform to change the support surface type and position of both lower limbs in order to determine changes in weight distribution and muscle including the vastus medialis, tibialis anterior, lateral hamstring, and lateral gastrocnemius of both lower limbs were evaluated during knee joint flexing and extending in a semi-squat movement in 32 hemiplegic patients. The support surface conditions applied to the lower limbs were divided into four categories: condition 1 had a stable platform for both lower limbs; condition 2 had an unstable platform for the non-hemiplegic side and a stable platform for the hemiplegic side; condition 3 had a stable platform for the non-hemiplegic side and an unstable platform for the hemiplegic side; and condition 4 had an unstable platform for both sides. The normalized EMG activity levels of muscles and weight bearing ratio of both sides in the four surface conditions were compared using repeated measures ANOVA. A significant increase was found in the weight support distribution for the hemiplegic side in flexing and extending sessions in condition 2 compared to the other conditions (p<.05). A statistically significant decrease in significant decrease in asymmetrical weight bearing in flexing and extending sessions was observed for condition 2 compared to the other conditions (p<.05). A similar significant decrease was found in differences in muscular activity for both lower limbs in condition 2 (p<.05). The muscular activity of the hemiplegic side, based on the support surface for each muscle showed a significantly greater increase in condition 2 (p<.05). An unstable platform for the non-hemiplegic side and a stable platform for the hemiplegic side therefore increased symmetry in terms of the weight support distribution rate and muscle activity of lower limbs in hemiplegic patients. The problem of postural control due to asymmetry in hemiplegic patients should be further studied with the aim of developing continuous effects of functional training based on the type and position of the support surfaces and functional improvement.