• Title/Summary/Keyword: Antenna pattern

Search Result 939, Processing Time 0.023 seconds

Telemetry Performance Enhancement Based on Spectral Efficient Retransmission (주파수 효율적 재전송 기반 원격측정 성능 향상)

  • Park, Chung-woon;Park, Hyo Sub
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.5
    • /
    • pp.429-436
    • /
    • 2017
  • Since the telemetry performance using the time-delayed data dissipates the wireless channel resources, we propose the spectral efficient retransmission scheme in this paper. In the proposed scheme, the telemetry data is retransmitted based on triggered memory to improve the spectral efficiency. The proposed scheme minimizes the error caused by multipath fading, antenna pattern as well as the error caused by the flight events. In the flight simulation data, we show the proposed scheme improves the telemetry performance based on spectral efficient retransmission.

Design of a Randomly Excited and Randomly Spaced Linear Array Using the Particle Swarm Optimization (Particle Swarm Optimization을 이용한 비균일 급전, 비균등 간격의 선형 어레이 설계)

  • Kim, Cheol-Bok;Jang, Jae-Sam;Lee, Ho-Sang;Kim, Jae-Hoon;Park, Seong-Bae;Lee, Mun-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.11
    • /
    • pp.45-54
    • /
    • 2008
  • In this paper, we use particle swarm optimization (PSO) to design a randomly excited and randomly spaced linear array with either the lowest side lobe level (SLL) or the narrowest beamwidth. The positions and the excitation amplitudes of the array elements are considered as variables to be controlled. The beam pattern is optimized by controlling the two variables simultaneously and randomly. The best beam patterns are obtained using PSO in the fitness function where performance is improved by the random assignment of weight coefficients to each angular sector of the beam Pattern. The weight coefficients and angles are obtained through several trial runs. Also, an extra term, ${\beta}{\ast}BW$, is added to the fitness function to account for the beamwidth as well as the SLL. Is produces the best result for the beam pattern with either the lowest SLL or the narrowest beamwidth. In the former case, the SLL and beamwidth are about -43dB and $32.2^{\circ}$, respectively, with only 10 elements. In the latter case, the SLL and beamwidth are about -26dB and $24.2^{\circ}$, respectively.

Verification of a Calibration Technique for a Full-Polarimetric Scatterometer System at C-band (C-밴드 완전 편파 측정용 스캐터미터 시스템 보정 기술 검증)

  • Park, Sin-Myeong;Go, Joo-Seoc;Joo, Jeong-Myeong;Kim, Hee-Young;Kim, Ju-Hui;Hwang, Ji-Hwan;Kwon, Soon-Gu;Shin, Jong-Chul;Oh, Yisok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.10
    • /
    • pp.1196-1203
    • /
    • 2012
  • This paper presents a study on the calibration of a C-band HPS(Hongik Polarimetric Scatterometer) system using the DMMCT(Differential Mueller Matrix Calibration Technique). For calibration of the polarimetric scatterometer system, a fully-polarimetric antenna pattern(magnitudes and phase-differences) of the antenna main-beam is measured using a conducting sphere at anechoic chamber. The polarimetric scatterometer system could be accurately calibrated after retrieving its distortions using the DMMCT. Unlike a single-polarimetric system, in a fully-polarimetric system, not only backscattering coefficients but also phase differences are important parameters. This calibrated HPS system can be used to measure accurate Mueller matrices of bare soil surfaces, rice paddies, and vegetation fields. The phase-difference parameters as well as the backscattering coefficients for co- and cross-polarizations can then be obtained. The accuracy of calibration was verified by comparing the measured backscattering coefficients with a scattering model. The measured polarization response of a plowed bare field was also compared with the polarization response which was synthesized using a polarimetric scattering model for verifying the calibration technique.

A Study on Sample Frequency Channel Selection of Near-Field Receiving Measurement for the Active Phased Array Antenna for Mono-Pulse Accuracy (모노펄스 정확도를 위한 능동배열위상레이다의 근접전계 수신시험 표본 주파수 채널 선택에 대한 연구)

  • Kwon, Yong-Wook;Yoon, Jae-Bok;Yoo, Woo-Sung;Jang, Heon-Soon;Kim, Do-Yeol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.4
    • /
    • pp.318-327
    • /
    • 2017
  • It is essential for the near-field receiving measurement to make beam pattern and check the performance of a active phased array antenna system. Also, we could obtain compensation value for mono-pulse function through the near-field receive test, however, if the radar has many frequency channel, the test would take long time and hard effort. So it is needed that frequency channels are selected for measurement and calculates the values for other frequency channels to improve efficiency in development and manufacture. In this case, the phase variations in sum and del channels would be checked. The phase measurement includes un-linear characteristic because of wrapping effect. Generally, radars have similar path length in sum and del channel, but if a radar has a electrical length gap between sum and del channel, errors could occur by phase's wrapping effect. In this paper, the interpolation method's error caused by electrical length gap is checked and the effective method for frequency channel selection to avoid wrapping effect is introduced.

Development of Planar Active Electronically Scanned Array(AESA) Radar Prototype for Airborne Fighter (항공기용 평면형 능동 전자주사식 위상 배열(AESA) 레이더 프로토 타입 개발)

  • Chong, Min-Kil;Kim, Dong-Yoon;Kim, Sang-Keun;Chon, Sang-Mi;Na, Hyung-Gi
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.12
    • /
    • pp.1380-1393
    • /
    • 2010
  • This paper presents a design, fabrication and the test results of planar active electronically scanned array(AESA) radar prototype for airborne fighter applications using transmit/receive(T/R) module hybrid technology. LIG Nex1 developed a AESA radar prototype to obtain key technologies for airborne fighter's radar. The AESA radar prototype consists of a radiating array, T/R modules, a RF manifold, distributed power supplies, beam controllers, compact receivers with ADC(Analog-to-Digital Converter), a liquid-cooling unit, and an appropriate structure. The AESA antenna has a 590 mm-diameter, active-element area capable of containing 536 T/R modules. Each module is located to provide a triangle grid with $14.7\;mm{\times}19.5\;mm$ spacing among T/R modules. The array dissipates 1,554 watts, with a DC input of 2,310 watts when operated at the maximum transmit duty factor. The AESA radar prototype was tested on near-field chamber and the results become equal in expected beam pattern, providing the accurate and flexible control of antenna beam steering and beam shaping.

High Resolution Spaceborne SAR Operation and Target Recognition Simulator Using STK (STK를 이용한 고해상도 위성 SAR 운용 및 표적물 추출 기법)

  • Lee, Bo-Yun;Lee, Seul-Ki;Lee, Woo-Kyung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.3
    • /
    • pp.299-309
    • /
    • 2013
  • A comprehensive SAR(Synthetic Aperture Radar) simulation is considered to be a complicated task since a full knowledge of the signal propagation characteristics, antenna pattern, system internal errors and interference noises should be taken into account. In high resolution target application modes, the time varying nature of target RCS(Radar Cross Section) strongly affects the generated SAR images. In this paper, in-depth SAR simulations are performed and analyzed incorporating the STK tools and MATLAB software. STK provides realistic orbit parameters while its radar module helps to extract accurate radiometric parameters of ground targets. SAR raw data corresponding to a given target is generated and processed using MATLAB simulator. The performance is measured by PSLR(Peak Sidelobe Ratio) and ISLR(Integrated Sidelobe Ratio) for a point target, which can be used as reference parameters for accurate radiometric calibration. Finally, high resolution target simulations are performed by adopting time varying target RCS characteristics.

RFID Based Indoor Localization and Effective Tag Arrangement Method (RFID를 기반으로 한 실내 위치 파악 및 효율적 Tag 배치)

  • Yoon, Chang-Sun;Yoon, Dong-Min;Kwon, Young-Chan;Hong, Yeon-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8760-8766
    • /
    • 2015
  • In this paper a technology which gives directions to people and also localization of the robotic vacuum cleaners inside some spacious buildings is developed. For this purpose, it is confirmed that which pattern has a small error in dealing with the indoor localization with various RFID tag arrangements attached on the ground. This experiment was conducted by using MT92(900MHz range Antenna) and ALR 9900+(Reader). As a result, the square arrangement has the least error, 21.19cm, among other patterns which are diamond, rectangle and regular hexagon. However, it is necessary to consider the number of tags in the unit area, from this point of view the regular hexagon arrangement is the most efficient arrangement among other patterns because it needs only 6 tags in the unit area.

Optimal Perturbation of Null Points Inherent to Riccati Solution and Control of Coupling in Nonuniform Coupled-Lines (불균일 결합선로에서 Riccati 해에 내재된 Null점의 최적 섭동과 결합도 제어)

  • Park, Eui-Joon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.3
    • /
    • pp.35-43
    • /
    • 2001
  • A method is newly presented to synthesize the modal impedances satisfying the desired coupling factor of a reflective (or hack ward) coupled-line. The synthesis is achieved by optimal perturbations of repeating null points of lobes inherent to the solution of the first order nonlinear differential equation for coupling. It is based on the synthesis method of nonlinear source distribution functions for the prescribed space factor pattern in the one-dimensional array antenna. Here, the conventional synthesis method for the even distribution function is extended to the odd case. Resulting modal impedances will have continuously varying profiles. The design procedure of asymmetrical and symmetrical couplers corresponding to the even and odd distribution functions, is examplified to show the generalization and the simplicity of the proposed method.

  • PDF

A Study on the Environment of USV Wireless Communication (무인선의 무선통신환경에 관한 연구)

  • Hong, Sin-Pyo;Jeong, Jong-Won;Lee, Chi-Won;Lee, Ho-Sik;Choi, Han-Woo;Park, In-Hong
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.53-57
    • /
    • 2009
  • Unmanned surface vehicles (USVs) conduct various missions while exchanging information with control centers. Maritime security, coastal surveillance, and sea surface and undersea inspections are included in the important missions of USVs. To carry out these missions, large amounts of information are required from sensors, such as cameras, radars, and sonars. High bandwidth wireless communication is necessary to send this information to the control center in real time. In general, USVs are made using small boats. The motions of small boats are easily influenced by sea waves and the magnitude of changes in the attitude is large and the period of the changes is short in comparison with large ships. Thus, the direction of an antenna beam pattern for a wireless communication system in a USV can change rapidly, and with a large magnitude. In addition, since the reflection of electromagnetic waves on the sea surface is not negligible, the effect of multipath noises on the wireless communication system must be considered carefully. There are also several other elements that negatively affect wireless communication systems in USVs. This paper presents the wireless communication environment to be considered in the design and implementation of wide bandwidth communication systems for USVs. Short test results for wireless communication on the sea are also given.

Development of System Performance Analysis Simulator for Spaceborne Synthetic Aperture Radar (위성용 영상레이더 시스템 성능 분석 시뮬레이터 개발)

  • Won, Young-Jin;Lee, Jae-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.4
    • /
    • pp.318-327
    • /
    • 2017
  • Synthetic Aperture Radars (SARs) that can be performed regardless of weather and day-and-night conditions have been developed for Earth remote sensing in recent decades. Korea Aerospace Research Institute (KARI) has developed and launched successfully the KOrea Multi-Purpose SATellit-5 (KOMPSAT-5) which is the first Korean SAR satellite in 2013, and is currently developing the KOMPSAT-6 which is the next generation series of the SAR satellite. This paper describes the development of the system performance analysis simulator which is necessary for spaceborne SAR payload design and analysis. The system performance analysis simulator consists of the antenna pattern generation simulator, the SAR performance analysis simulator, and the image quality analysis simulator. The simulation results of this research show that this simulator can be applicable as the design and analysis tool for the spaceborne SAR payload system during the design phase.