• Title/Summary/Keyword: Antenna array processing

Search Result 92, Processing Time 0.023 seconds

On the Utilization of Polarization Dependency Acquired by an Intentionally Misaligned Antenna Array for Mitigation of GPS Jammers

  • Park, Kwansik;Seo, Jiwon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.4
    • /
    • pp.291-296
    • /
    • 2021
  • Recently, the dual-polarized antenna array has drawn attention due to the dependency of its signal processing gain on the signal polarization. Even though this polarization dependency makes it possible to mitigate a non-right-hand circularly polarized (non-RHCP) jamming signal from the same direction as a GPS signal, the dual-polarized antennas are not yet widely used for various applications. This study suggests a method that can acquire the polarization dependency of the signal-processing gain by intentionally misaligning antenna elements in a single-polarized antenna array. The simulation results show that the proposed method can successfully mitigate a non-RHCP jammer from the same direction as a GPS signal as if a dual-polarized antenna array does and provide comparable signal-to-jammer-plus-noise ratio (SJNR) performance with a completely aligned single-polarized antenna array and a dual-polarized antenna array.

Performance Analysis of Adaptive Array Antenna for GPS Anti-Jamming (GPS 항재밍을 위한 적응 배열 안테나의 성능 분석)

  • Jeong, Taehee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.382-389
    • /
    • 2013
  • In anti-jamming GPS receiver, adaptive signal processing techniques in which the radiation pattern of adaptive array antenna of elements may be adaptively changed used to reject interference, clutter, and jamming signals. In this paper, I describes adaptive signal processing technique using the sample matrix inversion(SMI) algorithm. This adaptive signal processing technique can be applied effectively to wideband/narrowband anti-jamming GPS receiver because it does not consider the satellite signal directions and GPS signal power level exists below the thermal noise. I also analyzed the effects of covariance matrix sample size and diagonal loading technique on the system performance of five-element circular array antenna. To attain near optimum performance, more samples required for calculation covariance matrix. Diagonal loading technique reduces the system nulling capability against low-power jamming signals, but this technique improves robustness of adaptive array antenna.

Performance Analysis of Array Processing Techniques for GNSS Receivers under Array Uncertainties

  • Lee, Sangwoo;Heo, Moon-Beom;Sin, Cheonsig;Kim, Sunwoo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.2
    • /
    • pp.43-51
    • /
    • 2017
  • In this study, the effect of the steering vector model mismatch due to array uncertainties on the performance of array processing was analyzed through simulation, along with the alleviation of the model mismatch effect depending on array calibration. To increase the reliability of the simulation results, the actual steering vector of the array antenna obtained by electromagnetic simulation was used along with the Jahn's channel model, which is an experimental channel model. Based on the analysis of the power spectrum for each direction, beam pattern, and the signal-to-interference-plus-noise ratio of the beamformer output, the performance deterioration of array processing due to array uncertainties was examined, and the performance improvement of array processing through array calibration was also examined.

Adaptive array processing (적응 어레이 프로세싱)

  • 이상철
    • 전기의세계
    • /
    • v.29 no.9
    • /
    • pp.584-593
    • /
    • 1980
  • Conventional radar antenna systems are susceptible to performance degradation caused by unwanted signals received via the antenna sidelobes and/or mainlobes. Adaptive array systems offer possible solution to this interference problem by automatically steering nulls to unwanted signals providing significant system performance improvement. Another important andvantage of the adaptive array is its self-optimization capability which uses the collective incoming noise data for the nulling purposes. This paper provides a tutorial introduction to adaptive arrays as well as some new development of recent research in this area. Optimum link between the antenna theory and signal processing has been sought by illustrating the gain patterns and output signal-to-noise ratio. Signal acqusition methods are shown including a new attempt of the use of spread-spectrum techniques in conjuction with array systems.

  • PDF

ANALYSIS OF SPATIAL AND TEMPORAL ADAPTIVE PROCESSING FOR GNSS INTERFERENCE MITIGATION

  • Chang, Chung-Liang;Juang, Jyh-Ching
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.143-148
    • /
    • 2006
  • The goal of this paper is to analyze, through simulations and experiments, GNSS interference mitigation performance under various types of antenna structures against wideband and narrowband interferences using spatial-temporal adaptive signal processing (STAP) techniques. The STAP approach, which combines spatial and temporal processing, is a viable means of GNSS array signal processing that enhancing the desired signal quality and providing protection against interference. In this paper, we consider four types of 3D antenna array structure - Uniform Linear Array (ULA), Uniform Rectangular Array (URA), Uniform Circular Array (UCA), and the Single-Ring Cylindrical Array (SRCA) under an interference environment. Analytical evaluation and simulations are performed to investigate the system performance. This is followed by simulation GPS orbits in interfered environment are used to evaluate the STAP performance. Furthermore, experiments using a 2x2 URA hardware simulator data show that with the removal of wideband and narrowband interference through the STAP techniques, the signal tracking performance can be enhanced.

  • PDF

Performance Analysis of GPS Anti-Jamming Method Using Dual-Polarized Antenna Array in the Presence of Steering Vector Errors

  • Park, Kwansik;Seo, Jiwon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.2
    • /
    • pp.59-63
    • /
    • 2020
  • The antenna arrays are known to be effective for GPS anti-jamming and the performance can be improved further if a dual-polarized antenna array is used. However, when the Minimum Variance Distortionless Response (MVDR) beamformer is used as a signal processing algorithm for the dual-polarized antenna array, the anti-jamming performance can degrade in the presence of errors in the steering vector that is a key factor of the MVDR beamformer. Therefore, in this paper, the effect of the steering vector error on the anti-jamming performance of the dual-polarized antenna array is analyzed by simulations and the result is compared to that of the single-polarized antenna array.

Research for Performance Analysis of Antenna Arrays in Basestation for GSM System (GSM환경에서의 기지국 안테나 어레이 성능 분석에 관한 연구)

  • Chang Byong-Kun;Jeon Chang-Dae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.7 s.98
    • /
    • pp.740-745
    • /
    • 2005
  • This paper concerns estimating a desired signal in a multipath environment using linearly constrained array processor with master-slave type array processing and spatial smoothing method in GSM system. In computer simulation, it is shown that the spatial smoothing approach performs better than the master-slave type array processing while both methods perform better than linearly constrained array processing with respect to SINR and BER performances.

An Array Antenna Calibration Algorithm Using LTE Downlink Zadoff-Chu Sequence (LTE 하향링크의 Zadoff-Chu 시퀀스를 이용한 배열 안테나 Calibration 알고리즘)

  • Sun, Tiefeng;Jang, Jae Hyun;Yang, Hyun Wook;Choi, Seung Won
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.4
    • /
    • pp.51-57
    • /
    • 2013
  • Research on calibration of array antenna has become a hot spot in the area of signal processing and it is necessary to obtain the phase mismatch of each antenna channel. This paper presents a new calibration method for an array antenna system. In order to calibrate the phase mismatch of each antenna channel, we used primary synchronization signal (PSS) which exists in LTE downlink frame. Primary synchronization signal (PSS) is based on a Zadoff-Chu sequence which has a good correlation characteristic. By using correlation calculation, we can extract primary synchronization signal (PSS). After extracting primary synchronization signal (PSS), we use it to calibrate and reduce the phase errors of each antenna channel. In order to verify the new array antenna calibration algorithm which is proposed in this paper, we have simulated the proposed algorithm by using MATLAB. The array antenna system consists of two antenna elements. The phase mismatch of first antenna and second antenna is calculated accurately by proposed algorithm in the experiment test. Theory analysis and MATLAB simulation results are shown to verify the calibration algorithm.

Sweet Spot Search of Array Antenna Beam (Array 안테나 빔의 스위트 스폿 탐색)

  • Eom, Ki-Hwan;Kang, Seong-Ho;Lee, Chang-Young;NamKung, Wook;Hyun, Kyo-Hwan
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2005.08a
    • /
    • pp.115-119
    • /
    • 2005
  • In this paper, we propose a method that search the sweet spot of array antenna beam, and keep it for fast speed transmission in millimeter wave on single array antenna link. We use TDD(Time Division Duplex) as transfer method, and it transfers the control data of antenna. The proposed method is the modified genetic algorithm which selects a superior initial group through slave-processing in order to resolve the local solution of genetic algorithm. The efficiency of the proposed method is verified by means of simulations with white Gaussian noise and not on single array antenna link.

  • PDF

Antenna Array Compensation for Improved DOA Estimation (도래각 추정 성능 향상을 위한 배열 안테나 보정 기법)

  • Song, Heemang;Cho, Seunghoon;Lee, Jaeeun;Jeong, Seonghee;Shin, Hyun-Chool
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.5
    • /
    • pp.786-791
    • /
    • 2015
  • This paper presents a signal processing method for calibrating an antenna array to solve the inaccuracy of Direction of Arrival(DOA). Using reference data quantifying amplitude and phase distortion levels for each angles, we compensate each radar array’s amplitude and phase distortion. The proposed method is applied to the Bartlett, Capon and MUSIC algorithms, Using 77 GHz Frequency Modulated Continuous Wave(FMCW) Long Range Radar(LRR) signal, we experimentally demonstrate the performance improvement after the proposed compensation.