• Title/Summary/Keyword: Antenna Feed

Search Result 470, Processing Time 0.029 seconds

A Dual frequency Monopole Antenna using CPW Feed Line (코프래너 급전 이중 주파수 모노폴 안테나)

  • Kim, Joon-Il;Choi, Soon-Shin;Jee, Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.8 s.338
    • /
    • pp.47-54
    • /
    • 2005
  • The design method for a dual frequency antenna using CPW feed lines is presented. The antenna structures can be simplified by CPW feed lines and easily designed on integrated circuits. The presented antenna has two resonant frequency ranges and each respective resonant frequency is determined by its own length of monopole antenna. We used an impedance matching method by using a monopole coupling related to the ground of CPW feed lines As a result, the resonant frequencies were 5.25[GHz] and 23.5[GHz] and their bandwidths $35.2\%,\;and\;41.3\%$, respectively, and also, the separation of the two frequencies $370\;%$. We presented an analytical designing method to implement a dual frequency monopole antenna and showed simple antenna structures having two frequency ranges for RFIC Integrations.

A Novel Multiple Band Antenna Design Implementing Unbalanced Feed-Lines and Meandered Patch Options (비대칭 급전선로와 패치설계를 이용한 다중대역 안테나의 설계)

  • Jung, Jin-Woo;Roh, Hyoung-Hwan;Park, Jun-Seok;Cho, Hong-Goo
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.427-431
    • /
    • 2007
  • Applications in present-day mobile communication systems particularly require miniaturized dimensions and low-profiles of antenna in order to meet the mobile units. Thus, size reductions and bandwidth enhancements are becoming crucial design considerations for practical applications of microstrip antennas. The motivation of further experiments have been stepped to follow those studies for achieving compact and broadband, even multiplied operation modes, which are greatly increased with much attentions recently. To obtain broadband, single-feed, circularly polarized characteristics of microstrip antennas, a design with feed-line ought to be a factor of two. Usually, diagonally balanced-line feeds with hybrid coupler are employed to attain circular polarizations. We firstly formulated DGS (Defected Ground Structures) based operation principles of the entire microstrip components and therefore were able to derive impedance variance of feed-lines. After verifying corresponding experimental results, we targeted the frequency bands of UHF RFID (Ultra High Frequency Radio Frequency IDentification) and approximately of 0.4-2.4GHz have exhibited remarkable two resonance amplitudes as a dual band antenna. Our secondary researches were aimed to design quad band microstrip antenna which represents four resonance characteristics within the identical frequency bands as well. Microstrip patch has been meandered to lengthen the electrical paths, and the other design criteria with respecting physical parameters including radiation patterns and impedance bandwidths measurements will be described for verification. Advisable applications of these antennas can be GSM850, GSM900, GPS (L1-1575 and L2-1227) and UMTS-2110 of cellular systems, which extremely desire multiband and minimum size.

  • PDF

A Study on the Electrical Design of a Multi-Beam Large Antenna for S-band Satellite Payload (S-대역 위성 탑재용 다중 빔 대형 안테나의 전기적 설계 연구)

  • Yun, So-Heyun;Uhm, Man-Suk;Yom, In-Bok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1240-1247
    • /
    • 2010
  • This paper describes the study on the electrical design of a multi-beam large antenna for a satellite payload. This satellite antenna provides the universal communication and broadcasting services to personal portable terminals over the Korean Peninsula. The structure of the hybrid antenna fed by a feed array is proper to provide multi-beams. The amplitude and phase of each feed element should be optimized for a required beam and they can be obtained by GO (Geometrical Optics) and PO(Physical Optics) method. The number of feed elements are also optimized to meet the specification of EIRP(Effective Isotropically Radiated Power). The optimally designed antenna with the limited reflector size and minimum number of feed elements is shown in this paper.

Compact Circularly Polarized Antenna with a Capacitive Feed for GPS/GLONASS Applications

  • Jeong, Seong Jae;Hwang, Keum Cheol;Hwang, Do-In
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.767-770
    • /
    • 2012
  • This letter presents a novel compact circularly polarized patch antenna for Global Positioning System/Global Navigation Satellite System (GPS/GLONASS) applications. The proposed antenna is composed of a simple square radiating patch fed by a capacitive dual-feeder to increase the impedance bandwidth and a lumped element hybrid coupler to achieve the broadband characteristic of the axial ratio (AR). The realized antenna dimensions are $28mm{\times}28mm{\times}4mm$, which is the most compact size among the dual-band GPS/GLONASS antennas reported to date. The measured results demonstrate that the proposed antenna has a gain of 2.5 dBi to 4.2 dBi and an AR of 0.41 dB to 1.51 dB over the GPS/GLONASS L1 band (1.575 GHz to 1.61 GHz).

Design of a Low-Profile, High-Gain Fabry-Perot Cavity Antenna for Ku-Band Applications

  • Nguyen, Truong Khang;Park, Ikmo
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.3
    • /
    • pp.306-313
    • /
    • 2014
  • A Fabry-Perot resonator cavity antenna for Ku-band application is presented in this paper. The Fabry-Perot cavity is formed by a ground plane and a frequency selective surface (FSS) made of a circular hole array. The cavity resonance is excited by a single-feed microstrip patch located inside the cavity. The measured results show that the proposed antenna has an impedance bandwidth of approximately 13% ($VSWR{\leq}2$) and a 3-dB gain bandwidth of approximately 7%. The antenna produces a maximum gain of 18.5 dBi and good radiation patterns over the entire 3-dB gain bandwidth. The antenna's very thin profile, high directivity, and single excitation feed make it promising for use in wireless and satellite communication applications in a Ku-band frequency.

The Axial-displaced gregorian antenna design using Ray-tracing Method (Ray-tracing 기법을 이용한 축변위 그레고리안 안테나 설계)

  • Kim, Chun-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.6
    • /
    • pp.515-521
    • /
    • 2014
  • In this paper, we designed axis-displaced Gregorian antenna by using Ray-tracing method. This antenna improves gain, VSWR by rotating the axis of the sub-reflector to get rid of E-field wave returned from sub-reflector to feed horn. Therefore it reduce the sub-reflector size and the volume of antenna. This method is used to track the propagation path for radiation pattern of feed horn from feed horn to sub-reflector, main-reflector and air. We get E-field distribution of this antenna aperture and calculate antenna radiation pattern and optimize the antenna performance. The Ray-tracing Method was verified because the gain, radiation patterns, side lobe level, beam width and return loss of the designed antenna are very similar to CST simulation result and a measured result of the fabricated antenna.

Design of Compact Slot Antenna for 5.8 GHz RFID (5.8 GHz RFID용 소형 슬롯 안테나 설계)

  • Lee, Jong-Ig;Yeo, Junho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.71-72
    • /
    • 2013
  • In this paper, a design method for a compact slot antenna for 5.8 GHz RFID band (5.725-5.875 GHz) is studied. The proposed slot antenna is size-reduced by bending both ends of the straight slot in "${\Gamma}$"-shape, and a rectangular feed patch is located inside the slot. The effects of slot length, location of feed patch, and width and length of feed patch on the antenna performance are examined. A prototype antenna with optimized parameters for 5.8 GHz band is fabricated on an FR4 substrate and tested experimentally. The experimental results show that the frequency band for a VSWR < 3 ranges 5.72-6.13 GHz (bandwidth 410 MHz), and it corresponds fairly well with the simulated band 5.64-5.97 GHz (bandwidth 330 MHz). The fabricated antenna shows good radiation performance such as maximum power density in both directions normal to the slot plane, and low cross-polarization level of < -20 dB.

  • PDF

Compact Slot Antenna for 5.8 GHz RFID (5.8 GHz RFID용 소형 슬롯 안테나)

  • Lee, Jong-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.12
    • /
    • pp.2763-2768
    • /
    • 2013
  • In this paper, a design method for a compact slot antenna for 5.8 GHz RFID band (5.725-5.875 GHz) is studied. The proposed slot antenna is size-reduced by bending both ends of the straight slot in "I"-shape, and a rectangular feed patch is located inside the slot. The effects of slot length, location of feed patch, and width and length of feed patch on the antenna performance are examined. A prototype antenna with optimized parameters for 5.8 GHz band is fabricated on an FR4 substrate and tested experimentally to verify the results of this study. The experimental results show that the frequency band for a VSWR < 3 ranges 5.72-6.13 GHz (bandwidth 410 MHz), and it corresponds fairly well with the simulated band 5.64-5.97 GHz (bandwidth 330 MHz). The fabricated antenna shows good radiation performance such as maximum power density in both directions normal to the slot plane, low cross-polarization level of < -20 dB, and realized gain > 0 dBi within the frequency band.

Single-feed dual-band square microstrip patch antenna with U-slot

  • Oh, Sang-Jin;Yoon, Joon-Han;An, Gyoo-Chul;Lee, Sang-Mok;Kwak, Kyung-Sup
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.199-202
    • /
    • 2000
  • The U-slot patch antenna has been found experimentally to provide impedance and gain bandwidths. Experiment and simulation results include impedance bandwidth, copolar and crosspolar-pattern characteristics and gain measurements. If one of the parameters such as patch width or feed position is varied, U-slot patch can also function as a dual-frequency antenna.

  • PDF