• Title/Summary/Keyword: Antecedent Rainfall

Search Result 117, Processing Time 0.027 seconds

Determination of Effective Rainfall by US SCS Method and Regression Analysis (SCS방법 및 회귀분석에 의한 유출 강우량 결정)

  • 선우중호;윤용남
    • Water for future
    • /
    • v.10 no.2
    • /
    • pp.101-111
    • /
    • 1977
  • The analysis performed here is aimed to increase the familiarity of hydrologic process especially for the small basins which are densely gaged. Kyung An and Mu Shim river basins are selected as a represectative basin according to the criteria which UNESCO has establisheed back in 1964 and being operated under the auspice of Ministry of Construction. The data exerted from these basins is utilized for the determination of the characteristics of precipitation and runoff phenomena for the small basin, which is considerred as a typical Korean samll watershed. The methodology developed by Soil Conservation Service, USA for determination of runoff value from precipitation is applied to find the suitability of the method to Korean River Basin. The soil cover complex number or runoff curve number was determined by considering the type of soil, soil cover, land use and other factor such as antecent moisture content. The averag values of CN for Kyung An and Mushim river basins were found to be 63.9 and 63.1 under AMC II, however, the values obtained from soil cover complex was less than those from total precipitation and effective precicpitation by 10-30%. It may be worth to note that an attention has to be paid in the application of SCS method lo Korean river basin by adjusting 10-30% increase to the value obtained from soil cover complex. Finally, the design flood hydrograph was consturcted by employing unit hydrograph technique to the dimensionless mass curve. Also a stepwise multiple regression was performed to find the relationship between runoff and API, evapotranspiration rate, 5 days antecedent precipitation and daily temperature.

  • PDF

Verification of Nonpoint Sources Runoff Estimation Model Equations for the Orchard Area (과수재배지 비점오염부하량 추정회귀식 비교 검증)

  • Kwon, Heon-Gak;Lee, Jae-Woon;Yi, Youn-Jeong;Cheon, Se-Uk
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.1
    • /
    • pp.8-15
    • /
    • 2014
  • In this study, regression equation was analyzed to estimate non-point source (NPS) pollutant loads in orchard area. Many factors affecting the runoff of NPS pollutant as precipitation, storm duration time, antecedent dry weather period, total runoff density, average storm intensity and average runoff intensity were used as independent variables, NPS pollutant was used as a dependent variable to estimate multiple regression equation. Based on the real measurement data from 2008 to 2012, we performed correlation analysis among the environmental variables related to the rainfall NPS pollutant runoff. Significance test was confirmed that T-P ($R^2=0.89$) and BOD ($R^2=0.79$) showed the highest similarity with the estimated regression equations according to the NPS pollutant followed by SS and T-N with good similarity ($R^2$ >0.5). In the case of regression equation to estimate the NPS pollutant loads, regression equations of multiplied independent variables by exponential function and the logarithmic function model represented optimum with the experimented value.

Estimation of Soil Moisture Using Multiple Linear Regression Model and COMS Land Surface Temperature Data (다중선형 회귀모형과 천리안 지면온도를 활용한 토양수분 산정 연구)

  • Lee, Yong Gwan;Jung, Chung Gil;Cho, Young Hyun;Kim, Seong Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.1
    • /
    • pp.11-20
    • /
    • 2017
  • This study is to estimate the spatial soil moisture using multiple linear regression model (MLRM) and 15 minutes interval Land Surface Temperature (LST) data of Communication, Ocean and Meteorological Satellite (COMS). For the modeling, the input data of COMS LST, Terra MODIS Normalized Difference Vegetation Index (NDVI), daily rainfall and sunshine hour were considered and prepared. Using the observed soil moisture data at 9 stations of Automated Agriculture Observing System (AAOS) from January 2013 to May 2015, the MLRMs were developed by twelve scenarios of input components combination. The model results showed that the correlation between observed and modelled soil moisture increased when using antecedent rainfalls before the soil moisture simulation day. In addition, the correlation increased more when the model coefficients were evaluated by seasonal base. This was from the reverse correlation between MODIS NDVI and soil moisture in spring and autumn season.

Estimation of Antecedent Moisture Condition in Rainfall-Runoff Modeling Based on Soil Water Balance Model (Soil Water Balance 모델을 이용한 강우유출 모형의 초기함수 조건 추정)

  • Lee, Ye-Rin;Kang, Subin;Shim, Eunjeung;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.307-307
    • /
    • 2021
  • 개념적 강우-유출모형에서 토양수분과 관련된 물리적 거동은 간략화 된 형태로 강우 및 온도자료를 활용하여 중간변량(state variable)으로 간접적으로 고려되고 있다. 특히 강우-유출모형에 초기함수 조건은 선행함수조건을 고려하여 수문지질학적 평가를 통하여 결정되어야 하나, 일반적으로 가정되거나 모형에서 간략화 된 분석과정을 통해 추정되고 있다. 본 연구에서는 토양의 Water Balance 모형 기반의 개념적 토양수분 추정모형을 활용하였다. 토양수분의 시간적 변동성을 평가하는데 있어서 연속적으로 측정된 In-situ 토양수분 자료를 이용하여 모형의 적합성을 평가하였다. Green-Ampt 방법과 중력식 침투방법과 온도를 활용한 증발산 추정기법을 연계한 토양함수 평가 모형을 개발하였다. In-situ 토양수분 자료와 유역의 강수량 및 온도자료를 이용한 관련 매개변수를 Bayesian 기법을 통해 추정하였으며 매개변수의 민감도를 평가하여 제시하였다. 최종적으로 제안된 모형의 활용측면에서 강우-유출모형의 초기함수 조건으로써의 역할을 평가하였다. 구체적으로 첨두유량 및 유출고와 초기함수조건과의 관계를 제시하고 강우-유출모형에서 활용방안을 제시하고자 한다.

  • PDF

Characteristics of Pollutant Load from a Dam Reservoir Watershed - Case study on Seomjinkang Dam Reservoir - (댐저수지 유역의 오염부하 유출특성 - 섬진강댐 저수지를 중심으로 -)

  • Lee, Yo-Sang;Gang, Byeong-Su
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.6
    • /
    • pp.757-764
    • /
    • 2000
  • The investigation of water quality was performed at the upstream of Seomjinkang dam reservoir for the examination of pollutant load characteristics of the reservoir watershed during flood and normal flow periods. The highest water quality concentration was occurred at Y ongsan during normal flow period where it has been more polluted by population and livestock than other sites. Pollutant load varied depending on the sampling site, rainfall intensity and antecedent precipitation during the rainy period. Based on the water quality data measured from 1998 to 1999, the average concentration during rainy period was much higher than that of non~rainy period: BOD was 1.2~1.4 times, COD 1.2~1.7 times, SS 2.6~5.4 times, T-N 2.3~3.0 times, and T-P 2.4~7.5 times respectively. When the pollutant load measured during 7 different rainy periods in 1999 was compared with total pollutant load in 1999, the BOD and COD load measured during the 7 different rainy periods were 28% that is about 1.6 times as high as those of 1999. On the other hand, the rainfall amount measured during the 7 different rainy periods was about 17.5% of total rainfall amount in 1999. The total pollutant load of TN and TP measured during the 7 different rainy periods was almost 50% of total TN and TP loads in 1999. In case of SS, it was 72.8%. It was concluded that the inflow of pollutants into the lake during the rainy period held a high portion of total inflow in 1999. It was suggested that long~term water quality monitoring be performed to better quantity pollutant load to the lake especially during rainy periods.eriods.

  • PDF

Evaluation of SATEEC Daily R Module using Daily Rainfall (일강우를 고려한 SATEEC R 모듈 적용성 평가)

  • Woo, Wonhee;Moon, Jongpil;Kim, Nam Won;Choi, Jaewan;Kim, Ki-sung;Park, Youn Shik;Jang, Won Seok;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.841-849
    • /
    • 2010
  • Soil erosion is an natural phenomenon. However accelerated soil erosion has caused many environmental problems. To reduce soil loss from a watershed, many management practices have been proposed worldwide. To develop proper and efficient soil erosion best management practices, soil erosion rates should be estimated spatially and temporarily. The Universal Soil Loss Equation (USLE) and USLE-based soil erosion and sediment modelling systems have been developed and tested in many countries. The Sediment Assessment Tool for Effective Erosion Control (SATEEC) system has been developed and enhanced to provide ease-of-use interface to the USLE users. However many researchers and decision makers have requested to enhance the SATEEC system for simulation of soil erosion and sediment reflecting effects of single storm event. Thus, the SATEEC R factors were estimated based on 5 day antecedent rainfall data. The SATEEC 2.1 daily R factor was applied to the study watershed and it was found that the R2 and EI values (0.776 and 0.776 for calibration and 0.927 and 0.911 for validation) with the daily R were greater than those (0.721 and 0.720 for calibration and 0.906 and 0.881 for validation) with monthly R, which was available in the SATEEC 2.0 system. As shown in this study, the SATEEC with daily R can be used to estimate soil erosion and sediment yield at a watershed scale with higher accuracy. Thus the SATEEC with daily R can be efficiently used to develop site-specific soil erosion best management practices based on spatial and temporal analysis of soil erosion and sediment yield at a daily-time step, which was not possible with USLE-based soil erosion modeling system.

The Application of Adaptive Network-based Fuzzy Inference System (ANFIS) for Modeling the Hourly Runoff in the Gapcheon Watershed (적응형 네트워크 기반 퍼지추론 시스템을 적용한 갑천유역의 홍수유출 모델링)

  • Kim, Ho Jun;Chung, Gunhui;Lee, Do-Hun;Lee, Eun Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5B
    • /
    • pp.405-414
    • /
    • 2011
  • The adaptive network-based fuzzy inference system (ANFIS) which had a success for time series prediction and system control was applied for modeling the hourly runoff in the Gapcheon watershed. The ANFIS used the antecedent rainfall and runoff as the input. The ANFIS was trained by varying the various simulation factors such as mean areal rainfall estimation, the number of input variables, the type of membership function and the number of membership function. The root mean square error (RMSE), mean peak runoff error (PE), and mean peak time error (TE) were used for validating the ANFIS simulation. The ANFIS predicted runoff was in good agreement with the measured runoff and the applicability of ANFIS for modelling the hourly runoff appeared to be good. The forecasting ability of ANFIS up to the maximum 8 lead hour was investigated by applying the different input structure to ANFIS model. The accuracy of ANFIS for predicting the hourly runoff was reduced as the forecasting lead hours increased. The long-term predictability of ANFIS for forecasting the hourly runoff at longer lead hours appeared to be limited. The ANFIS might be useful for modeling the hourly runoff and has an advantage over the physically based models because the model construction of ANFIS based on only input and output data is relatively simple.

A Study of Soil Moisture Retention Relation using Weather Radar Image Data

  • Choi, Jeongho;Han, Myoungsun;Lim, Sanghun;Kim, Donggu;Jang, Bong-joo
    • Journal of Multimedia Information System
    • /
    • v.5 no.4
    • /
    • pp.235-244
    • /
    • 2018
  • Potential maximum soil moisture retention (S) is a dominant parameter in the Soil Conservation Service (SCS; now called the USDA Natural Resources Conservation Service (NRCS)) runoff Curve Number (CN) method commonly used in hydrologic modeling for event-based flood forecasting (SCS, 1985). Physically, S represents the depth [L] soil could store water through infiltration. The depth of soil moisture retention will vary depending on infiltration from previous rainfall events; an adjustment is usually made using a factor for Antecedent Moisture Conditions (AMCs). Application of the method for continuous simulation of multiple storms has typically involved updating the AMC and S. However, these studies have focused on a time step where S is allowed to vary at daily or longer time scales. While useful for hydrologic events that span multiple days, this temporal resolution is too coarse for short-term applications such as flash flood events. In this study, an approach for deriving a time-variable potential maximum soil moisture retention curve (S-curve) at hourly time-scales is presented. The methodology is applied to the Napa River basin, California. Rainfall events from 2011 to 2012 are used for estimating the event-based S. As a result, we derive an S-curve which is classified into three sections depending on the recovery rate of S for soil moisture conditions ranging from 1) dry, 2) transitional from dry to wet, and 3) wet. The first section is described as gradually increasing recovering S (0.97 mm/hr or 23.28 mm/day), the second section is described as steeply recovering S (2.11 mm/hr or 50.64 mm/day) and the third section is described as gradually decreasing recovery (0.34 mm/hr or 8.16 mm/day). Using the S-curve, we can estimate the hourly change of soil moisture content according to the time duration after rainfall cessation, which is then used to estimate direct runoff for a continuous simulation for flood forecasting.

An analysis of runoff characteristic by using soil moisture in Sulma basin (설마천 연구지역에서의 토양수분량을 활용한 유출 발생 특성분석)

  • Kim, Kiyoung;Lee, Yongjun;Jung, Sungwon;Lee, Yeongil
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.9
    • /
    • pp.615-626
    • /
    • 2019
  • Soil moisture and runoff have very close relationship. Especially the water retention capacity and drainage characteristics of the soil are determined by various factors of the soil. In this study, a total of 40 rainfall events were identified from the entire rainfall events of Sulma basin in 2016 and 2017. For each selected events, the constant-K method was used to separate direct runoff and baseflow from total flow and calculate the runoff coefficient which shows positive exponential curve with Antecedent Soil Moisture (ASM). In addition to that, the threshold of soil moisture was determined at the point where the runoff coefficient starts increasing dramatically. The threshold of soil moisture shows great correlation with runoff and depth to water table. It was founded that not only ASM but also various factors, such as Initial Soil Moisture (ISM), storage capacity of soil and precipitation, affect the results of runoff response. Furthermore, wet condition and dry condition are separated by ASM threshold and the start and peak response are analyzed. And the results show that the response under wet condition occurred more quickly than that of dry condition. In most events occurred in dry condition, factors reached peak in order of soil moisture, depth to water table and runoff. However, in wet condition, they reached peak in order of depth to water table, runoff and soil moisture. These results will help identify the interaction among factors which affect the runoff, and it will help establish the relationship between various soil conditions and runoff.

Development of disaster severity classification model using machine learning technique (머신러닝 기법을 이용한 재해강도 분류모형 개발)

  • Lee, Seungmin;Baek, Seonuk;Lee, Junhak;Kim, Kyungtak;Kim, Soojun;Kim, Hung Soo
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.4
    • /
    • pp.261-272
    • /
    • 2023
  • In recent years, natural disasters such as heavy rainfall and typhoons have occurred more frequently, and their severity has increased due to climate change. The Korea Meteorological Administration (KMA) currently uses the same criteria for all regions in Korea for watch and warning based on the maximum cumulative rainfall with durations of 3-hour and 12-hour to reduce damage. However, KMA's criteria do not consider the regional characteristics of damages caused by heavy rainfall and typhoon events. In this regard, it is necessary to develop new criteria considering regional characteristics of damage and cumulative rainfalls in durations, establishing four stages: blue, yellow, orange, and red. A classification model, called DSCM (Disaster Severity Classification Model), for the four-stage disaster severity was developed using four machine learning models (Decision Tree, Support Vector Machine, Random Forest, and XGBoost). This study applied DSCM to local governments of Seoul, Incheon, and Gyeonggi Province province. To develop DSCM, we used data on rainfall, cumulative rainfall, maximum rainfalls for durations of 3-hour and 12-hour, and antecedent rainfall as independent variables, and a 4-class damage scale for heavy rain damage and typhoon damage for each local government as dependent variables. As a result, the Decision Tree model had the highest accuracy with an F1-Score of 0.56. We believe that this developed DSCM can help identify disaster risk at each stage and contribute to reducing damage through efficient disaster management for local governments based on specific events.