• Title/Summary/Keyword: Antarctic snow

Search Result 23, Processing Time 0.022 seconds

Assembly processes of moss and lichen community with snow melting at the coastal region of the Barton Peninsula, maritime Antarctic

  • Kim, Seok Cheol;Kim, Jun Seok;Hong, Bo Ram;Hong, Soon Gyu;Kim, Ji Hee;Lee, Kyu Song
    • Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.55-65
    • /
    • 2016
  • Background: In this article, it was analyzed how snow melting affects the assembly of lichen and moss communities in a small area of the coastal region of Barton Peninsula, which is in maritime Antarctic. In the small area, even though there is a huge gap of difference of the environment between the snow-filled area and snow-melt one, the latter did not have distinctive environmental gradients. Results: Depending on the snow melting time, coverage and species diversity of lichens and mosses tend to increase remarkably. For species with significant changes depending on the snow-covered period, there are Andreaea regularis, crustose lichens, Placopsis contortuplicata, Usnea aurantiaco-atra, and snow algae. In this area, the process of vegetation assembly process has shown the directional development in the order of snow algae${\rightarrow}$crustose, lichen sub-formation${\rightarrow}$fruticose lichen, moss cushion sub-formation (Andreaea sociation)${\rightarrow}$fruticose lichen, and moss cushion sub-formation (Usnea sociation), according to the order of snow melting. These directional development stages are shown in gradual change in small area with the snow melting phenomena. However, in the snow-free area, where water is sufficiently supplied, it is expected that moss carpet sub-formation (Sanionia sociation) will be developed. Vegetation development in the small area with the snow melting phenomena, depending on differences of resistance on snow kill and moisture settled by species in according to the time of snow melting, tolerance model to form community is followed. Conclusions: The research results explain the development of vegetation in the Antarctic tundra and its spatial distribution according to the period for growth of lichens and mosses in the summer time by differences of snow melting in the small area. In the future, if research for the community development process in a large scale will be done, it will be helpful to figure out temporal and spatial dynamic of vegetation in the Antarctic tundra where snow and glaciers melt rapidly due to climatic warming.

Variability of Pb, Mn, Al and Na Concentrations is Snow Deposited from Winter to Early Summer 1998 in Livingston lsland, Antarctic Peninsula

  • Sungmin Hong;Lee, Gangwoong;Velde, Katja-Van de;Claude F. Boutron
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.E2
    • /
    • pp.85-96
    • /
    • 2000
  • The concentrations of Pb, Mn, Al and Na were measured from a total of 26 snow samples collected from a 1.5-m deep snow pit in Livingston Island, South Shetland Islands, at the northern tip of the Antarctic Peninsula. Ore sampling location is great concern, because of its proximity to the southern extremity of south America, a candidate for the source regions of pollutant aerosols entering Antarctica. The mean concentrations of Pb and Mn were found to be 4.97 pg g(sup)-1 and 20.6 pgg(sup)-1, respectively. These concentrations levels are similar to those reported for recent snow at other Antarctic sites with pronounced spring maxima for both metals. Contributions form natural sources are estimated to be minor (∼16%) for Pb. For Mn, on the other hand, contribution from rock and soil dusts is found to be very important. Excess Pb over Pb from natural sources is likely to be anthropogenic, especially from South Americal. Our results show that yearly Pb fallout flux is much greater in Antarctic coastal areas than at other Antarctic locations far from the coast , indicating that the transport and deposition patterns of pollutant aerosols are not simple is Antarctica. It is also suggested that the recycling of anthropogenic Pb in seawater to the atmosphere could significantly contribute to the Pb fallout flux in the Antarctic coastal regions.

  • PDF

Natural and Anthropogenic Heavy Metal Deposition to the Snow in King George Island, Antarctic Peninsula

  • Hong, Sung-Min;Lluberas, Albert;Lee, Gang-Woong;Park, Jun-Kun
    • Ocean and Polar Research
    • /
    • v.24 no.3
    • /
    • pp.279-287
    • /
    • 2002
  • Successive 24 snow samples, collected from a 1.2m snow pit at a site on the summit of Main Dome in King George Island, Antarctic Peninsula, were measured for heavy metals such as Pb, Cd, Cu, and Zn and other chemical species. The mean concentrations of heavy metals are 3.48pg/g for Pb, 0.10pg/g for Cd, 16.6 pg/g for Cu and 15.8 pg/g for Zn, respectively. Pb and Cd concentrations observed in our samples are very comparable to those reported for recent snow at other Antarctic sites, while Zn and Cu levels are much higher than those at other sites. The annual fallout fluxes of all heavy metals approximately calculated are, however, much greater in King George Island than at other sites. With respect to the estimates of natural contributions, sea salt spray is found to be a major contributor to Cd and Zn inputs to the snow and minor to Cu inputs. On the other hand, the anthropogenic input can account for a large part of Pb concentrations. A tentative estimate represents that local emissions could be responsible for more than half of the excess Pb flux to the snow in King George Island.

The Lichen Flora of Oases of Continental Antarctic, and the Ecological Adaptations of Antarctic Lichens

  • Andreev, Mikhail
    • 한국균학회소식:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.24-28
    • /
    • 2006
  • Author have studies lichen flora of the most important ice-free areas of Continental Antarctic: Bunger Hills, and the vicinity of Prudz Bay (Larsemann Hills, and Radok Lake in Prince Charles Mountains). Totally 44 lichen species from 22 genera were reported for Bunger Hills and 50 lichen species from 22 genera and 10 families: Acarosporaceae, Lecanoraceae, Lecideaceae, Parmeliaceae, Pertusariaceae, Physciaceae, Rhizocarpaceae, Stereocaulaceae, Theloschistaceae, and Umbilicariaceaewere reported for the Prudz Bay Region. 20 lichen species were found in the region for the first time. Phytogeographic analysis indicated a relatively high proportion of species with bipolar distribution - about 50% of recorded lichen species. About 30% of lichens normally don't extend into maritime zone occurring in continental Antarctic only. The most common lichen families in the region are Buelliaceae, Lecanoraceae and Teloschistaceae. The water supply and not a temperature is the critical factor for lichens in the Continental Antarctic. Moisture appears to be supplied for lichens not only from snow-melt water but mainly from air. In Maritime Antarctic, due to high air humidity macrolichens form communities everywhere (Himantormia, Usnea and Umbilicaria). In oases of Continental Antarctic extensive sites are lacking in lichen cover, even if the ground is normally snow free. Lichens occur at humid sites with moisture which were brought by winds over the ice cap and poorly developed or absent in dry areas. Of particular significance for lichens are substrate characteristics, animals influence and salinity brought by wind in coastal areas. Most rich lichen vegetation developed in oases around nests of snow petrels, where the melt water is enriched by nutrients. In contrast, the most pure vegetation is on mobile sand and gravel and in salted coastal habitats.

  • PDF

Particle Size Distribution Analysis of Mineral Dust in Polar Snow Using a Coulter Counter (쿨터카운터(Coulter Counter)를 이용한 극지 눈시료 중 광물성 먼지의 입자크기분포 분석)

  • Kang, Jung-Ho;Hwang, Heejin;Hong, Sang Bum;Hur, Soon Do
    • Ocean and Polar Research
    • /
    • v.36 no.4
    • /
    • pp.319-326
    • /
    • 2014
  • Mineral dust in the polar snow plays an important role both in the climate system of the Earth and in global biogeochemical cycles. Analysis of the concentration and the particle size distribution of mineral dust has been carried out in the snow from the Antarctic surface snow and the Greenland snowpit. Among the various particle size determination techniques, a Multisizer 3 Coulter Counter in a class 100 clean bench counted all particles between 1.1 and $30.0{\mu}m$ with a $50{\mu}m$ aperture tube. The aperture tube size, the concentration of electrolytes and the accuracy of the particle size distribution were determined in this study. The number concentrations from the Antarctic surface snow were 81,843 particles $mL^{-1}$, but those from the Greenland snowpit were 10,666 particles $mL^{-1}$. In the volume distribution, the distributions of mineral dust in both the Antarctic surface snow and the Greenland snowpit showed lognormal distribution in the size interval 1.1 to $6.0{\mu}m$ with the mode, 3.562 and $3.836{\mu}m$, respectively. The analysis technique using a coulter counter for mineral dust could be used for reconstructing paleoclimates from polar ice cores.

The Study on Occurrence of Asian Dust and Their Controlling Factors in Korea (한국의 황사 출현에 영향을 미치는 요인에 관한 연구)

  • Kim, Sun-Young;Lee, Seung-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.44 no.6
    • /
    • pp.675-690
    • /
    • 2009
  • This paper aims to analyze number of Asian dust days and their controlling factors in Korea. Asian dust days, Arctic oscillation index, Antarctic oscillation index and Eurasian snow cover data were used in this study. The number of Asian dust days was increasing after the middle 1980s. The number of Asian dust days was concentrated in April. The number of Asian dust days was increased second half (5.1 days) than first half (3.2 days) of the study period. The number of Asian dust days had positive relationship with winter Arctic oscillation index and Antarctic oscillation index. When the Arctic oscillation index and Antarctic oscillation index is positive, the Asian dust days will be increased. The number of Asian dust days had negative relationship with the Eurasian snow cover. When the Eurasian snow cover will be decreased, the Asian dust days will be increased.

Different Climate Regimes Over the Coastal Regions of the Eastern Antarctic Ice Sheet

  • Cunde, Xiao;Dahe, Qin;Zhongqin, Li;Jiawen, Ren;Allison, Ian
    • Ocean and Polar Research
    • /
    • v.24 no.3
    • /
    • pp.227-236
    • /
    • 2002
  • For ten firn cores, from both the eastern and the western side of Lambert Glacier basin (LGB), snow accumulation rate and isotopic temperature were measured far the recent 50 years. Results show that snow accumulation for five cores over the eastern side of LGB (GC30, GD03, GD15, DT001, and DT085) at Wilks Land and Princess Elizabeth Land increases, whereas it decreases at the western side (Core E, DML05, W200, LGB 16, and MGA) at Dronning Maud Land, Mizuho Plateau and Kamp Land. For the past decades, the increasing rate was $0.34-2.36kg\;m^{-2}a^{-1}$ at the eastern side and the decreasing rate was $-0.01\;-\;-2.36kg\;m^{-2}\;a^{-1}$ at the western side. Temperatures at the eastern LGB were also increased with the rate of $0.02%o\;a^{-l}$. At the western LGB it was difficult to see clear trends, which were confirmed by Instrumental temperature records at coastal stations. Although statistic analysis and modeling results display that both surface temperature and accumulation rate has increased trends in Antarctic ice sheet during 1950-2000, the regional distributions were much more different for different geographic areas. We believe that ice-core records at Wilks Land and Princess Elizabeth Land reflect the real variations of SST and moisture change in the southern India Ocean. For the Kamp Land and Dronning Maud Land, however circulation pattern was different, by which the climate was more complicated. The International Trans-Antarctic Scientific Expedition (ITASE) aimed to reveal an overall spatial pattern of climate change over Antarctic ice sheet for the past 200 years. This study points the importance of continental to regional circulation to annual-decadal scale climate change in Antarctica.

Influence of microenvironment on the spatial distribution of Himantormia lugubris (Parmeliaceae) in ASPA No. 171, maritime Antarctic

  • Choi, Seung Ho;Kim, Seok Cheol;Hong, Soon Gyu;Lee, Kyu Song
    • Journal of Ecology and Environment
    • /
    • v.38 no.4
    • /
    • pp.493-503
    • /
    • 2015
  • This study analyzed how spatial distribution of Himantormia lugubris is affected by the microenvironment in the Antarctic Specially Protected Area (ASPA) No. 171 located in the Barton Peninsula of King George Island that belongs to the maritime Antarctic. In order to determine the population structure of H. lugubris growing in Baekje Hill within ASPA No. 171, we counted the individuals of different size groups after dividing the population into 5 growth stages according to mean diameter as follows: ≤ 1 cm, 1-3 cm, 3-5 cm, 5-10 cm, and ≥ 10 cm. The count of H. lugubris individuals in each growth stage was converted into its percentage with respect to the entire population, which yielded the finding that stages 1 through 5 accounted for 32.8%, 25.3%, 15.9%, 22.5%, and 3.5%, respectively. This suggests that the population of H. lugubris in ASPA No. 171 has a stable reverse J-shaped population structure, with the younger individuals outnumbering mature ones. The mean density of H. lugubris was 17.6/0.25 m2, mean canopy cover 13.3%, and the mean dry weight 37.8 g/0.25 m2. It began to produce spore in the sizes over 3 cm, and most individuals measuring 5-10 cm were adults with sexually mature apothecia. The spatial distribution of H. lugubris was highly heterogeneous. The major factors influencing its distribution and performance were found to be the period covered by snow, wind direction, moisture, size of the substrate, and canopy cover of Usnea spp. Based on these factors, we constructed a prediction model for estimating the spatial distribution of H. lugubris. Conclusively, the major factors for the spatial distribution of H. lugubris were snow, wind, substrate and the competition with Usnea spp. These results are important for understanding of the distribution in the maritime Antarctic and evolution of H. lugubris that claims a unique life history and ecological niche.

A Study on High-Resolution Seasonal Variations of Major Ionic Species in Recent Snow Near the Antarctic Jang Bogo Station (남극 장보고과학기지 인근에서 채취한 눈시료 내의 주요 이온성분들의 고해상도 계절변동성 연구)

  • Kwak, Hoje;Kang, Jung-Ho;Hong, Sang-Bum;Lee, Jeonghoon;Chang, Chaewon;Hur, Soon Do;Hong, Sungmin
    • Ocean and Polar Research
    • /
    • v.37 no.2
    • /
    • pp.127-140
    • /
    • 2015
  • A continuous series of 60 snow samples was collected at a 2.5-cm interval from a 1.5-m snow pit at a site on the Styx Glacier Plateau in Victoria Land, Antarctica, during the 2011/2012 austral summer season. Various chemical components (${\delta}D$, ${\delta}^{18}O$, $Na^+$, $K^+$, $Mg^{2+}$, $Ca^{2+}$, $Cl^-$, $SO_4{^2-}$, $NO_3{^-}$, $F^-$, $CH_3SO_3{^-}$, $CH_3CO_2{^-}$ and $HCO_2{^-}$) were determined to understand the highly resolved seasonal variations of these species in the coastal atmosphere near the Antarctic Jang Bogo station. Based on vertical profiles of ${\delta}^{18}O$, $NO_3{^-}$and MSA, which showed prominent seasonal changes in concentrations, the snow samples were dated to cover the time period from 2009 austral winter to 2012 austral summer with a mean accumulation rate of $226kgH_2Om^{-2}yr^{-1}$. Our snow profiles show pronounced seasonal variations for all the measured chemical species with a different pattern between different species. The distinctive feature of the occurrence patterns of the seasonal variations is clearly linked to changes in the relative strength of contributions from various natural sources (sea salt spray, volcanoes, crust-derived dust, and marine biogenic activities) during different short-term periods. The results allow us to understand the transport pathways and input mechanisms for each species and provide valuable information that will be useful for investigating long-term (decades to century scale periods) climate and environmental changes that can be deduced from an ice core to be retrieved from the Styx Glacier Plateau in the near future.