• Title/Summary/Keyword: Antarctic ecosystem

Search Result 22, Processing Time 0.018 seconds

Analysis of Development Characteristics of the Terra Nova Bay Polynya in East Antarctica by Using SAR and Optical Images (SAR와 광학 영상을 이용한 동남극 Terra Nova Bay 폴리냐의 발달 특성 분석)

  • Kim, Jinyeong;Kim, Sanghee;Han, Hyangsun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1245-1255
    • /
    • 2022
  • Terra Nova Bay polynya (TNBP) is a representative coastal polynya in East Antarctica, which is formed by strong katabatic winds. As the TNBP is one of the major sea ice factory in East Antarctica and has a great impact on regional ocean circulation and surrounding marine ecosystem, it is very important to analyze its area change and development characteristics. In this study, we detected the TNBP from synthetic aperture radar (SAR) and optical images obtained from April 2007 to April 2022 by visually analyzing the stripes caused by the Langmuir circulation effect and the boundary between the polynya and surrounding sea ice. Then, we analyzed the area change and development characteristics of the TNBP. The TNBP occurred frequently but in a small size during the Antarctic winter (April-July) when strong katabatic winds blow, whereas it developed in a large size in March and November when sea ice thickness is thin. The 12-hour mean wind speed before the satellite observations showed a correlation coefficient of 0.577 with the TNBP area. This represents that wind has a significant effect on the formation of TNBP, and that other environmental factors might also affect its development process. The direction of TNBP expansion was predominantly determined by the wind direction and was partially influenced by the local ocean current. The results of this study suggest that the influences of environmental factors related to wind, sea ice, ocean, and atmosphere should be analyzed in combination to identify the development characteristics of TNBP.

Phytoplankton Variability in Response to Glacier Retreat in Marian Cove, King George Island, Antarctica in 2021-2022 Summer (하계 마리안 소만 빙하후퇴에 따른 식물플랑크톤 변동성 분석)

  • Chorom Shim;Jun-Oh Min;Boyeon Lee;Seo-Yeon Hong;Sun-Yong Ha
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.417-426
    • /
    • 2023
  • Rapid climate change has resulted in glacial retreat and increased meltwater inputs in the Antarctic Peninsula, including King George Island where Marian Cove is located. Consequently, these phenomena are expected to induce changes in the water column light properties, which in turn will affect phytoplankton communities. To comprehend the effects of glacial retreat on the marine ecosystem in Marian Cove, we investigated on phytoplankton biomass (chlorophyll-a, chl-a) and various environment parameters in this area in December 2021 and January 2022. The average temperature at the euphotic depth in January 2022 (1.41 ± 0.13 ℃) was higher than that in December 2021 (0.87 ± 0.17 ℃). Contrastingly, the average salinity was lower in January 2022 (33.9 ± 0.10 psu) than in December 2021 (34.1 ± 0.12 psu). Major nutrients, including dissolved inorganic nitrogen, phosphate, and silicate, were sufficiently high, and thus, did not act as limiting factors for phytoplankton biomass. In December 2021 and January 2022, the mean chl-a concentrations were 1.03 ± 0.64 and 0.66 ± 0.15㎍ L-1, respectively. The mean concentration of suspended particulate matter (SPM) was 24.9 ± 3.54 mgL-1 during the study period, with elevated values observed in the vicinity of the inner glacier. However, relative lower chl-a concentrations were observed near the inner glacier, possibly due to high SPM load from the glacier, resulting in reduced light attenuation by SPM shading. Furthermore, the proportion of nanophytoplankton exceeded 70% in the inner cove, contributing to elevated mean fractions of nanophytoplankton in the glacier retreat marine ecosystem. Overall, our study indicated that freshwater and SPM inputs from glacial meltwater may possibly act as main factors controlling the dynamics of phytoplankton communities in glacier retreat areas. The findings may also serve as fundamental data for better understanding the carbon cycle in Marian Cove.