• Title/Summary/Keyword: AntWorld

Search Result 12, Processing Time 0.016 seconds

Differential Response Style on the Personality Assessment Inventory according to Compensation-Seeking Status in Patients with Traumatic Brain Injury (외상성 뇌손상 환자에서 보상추구 여부에 따른 성격평가질문지 반응 양식의 차이)

  • Kim, Yeon-Jin;Kweon, Seok-Joon;Rho, Seung-Ho;Paik, Young-Suk
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.23 no.1
    • /
    • pp.12-19
    • /
    • 2015
  • Objectives : This study examined the characteristics and differences of PAI(Personality Assessment Inventory) profile between compensation-seeking(CS) and treatment-seeking(TS) patients with traumatic brain injury(TBI) and assessed the clinical meaning of the characteristics and differences of profiles between the two groups. Methods : 36 TBI patients who visited the Wonkwang University Hospital were selected. The patients were categorized as compensation-seeking TBI patients(n=22) and treatment-seeking TBI patients(n=14). The PAI scales and subscales were used to compare differences between two groups. t-verification for each variable and comparison analysis were performed. Results:In validity scales, CS group showed significantly higher NIM scores and lower PIM scores than TS groups. In full scales, CS group showed significantly higher SOM, ANX, ARD, DEP, and SCZ scores than TS group. In subscales, CS group showed significantly higher SOM-S, ANX-A, ARD-P, DEP(-C, A, P), (MAN-I), PAR-H, SCZ(-T, P), BOR(-A, N), and ANT-S scores than TS groups. In supplementary scales, CS group showed significantly higher SUI, NON and AGG-P, and lower RXR scores than TS group. Conclusions:There were significant differences in PAI scales with validity scales, some full and subscales according to compensation seeking status in TBI patients. The CS patients tended to exaggerate their symptoms on PAI, and showed higher scores representing somatic preoccupation and emotional distress. These results show the usefulness of PAI in reflecting the significant psychological differences between two groups.

Wearable Computers

  • Cho, Gil-Soo;Barfield, Woodrow;Baird, Kevin
    • Fiber Technology and Industry
    • /
    • v.2 no.4
    • /
    • pp.490-508
    • /
    • 1998
  • One of the latest fields of research in the area of output devices is tactual display devices [13,31]. These tactual or haptic devices allow the user to receive haptic feedback output from a variety of sources. This allows the user to actually feel virtual objects and manipulate them by touch. This is an emerging technology and will be instrumental in enhancing the realism of wearable augmented environments for certain applications. Tactual displays have previously been used for scientific visualization in virtual environments by chemists and engineers to improve perception and understanding of force fields and of world models populated with the impenetrable. In addition to tactual displays, the use of wearable audio displays that allow sound to be spatialized are being developed. With wearable computers, designers will soon be able to pair spatialized sound to virtual representations of objects when appropriate to make the wearable computer experience even more realistic to the user. Furthermore, as the number and complexity of wearable computing applications continues to grow, there will be increasing needs for systems that are faster, lighter, and have higher resolution displays. Better networking technology will also need to be developed to allow all users of wearable computers to have high bandwidth connections for real time information gathering and collaboration. In addition to the technology advances that make users need to wear computers in everyday life, there is also the desire to have users want to wear their computers. In order to do this, wearable computing needs to be unobtrusive and socially acceptable. By making wearables smaller and lighter, or actually embedding them in clothing, users can conceal them easily and wear them comfortably. The military is currently working on the development of the Personal Information Carrier (PIC) or digital dog tag. The PIC is a small electronic storage device containing medical information about the wearer. While old military dog tags contained only 5 lines of information, the digital tags may contain volumes of multi-media information including medical history, X-rays, and cardiograms. Using hand held devices in the field, medics would be able to call this information up in real time for better treatment. A fully functional transmittable device is still years off, but this technology once developed in the military, could be adapted tp civilian users and provide ant information, medical or otherwise, in a portable, not obstructive, and fashionable way. Another future device that could increase safety and well being of its users is the nose on-a-chip developed by the Oak Ridge National Lab in Tennessee. This tiny digital silicon chip about the size of a dime, is capable of 'smelling' natural gas leaks in stoves, heaters, and other appliances. It can also detect dangerous levels of carbon monoxide. This device can also be configured to notify the fire department when a leak is detected. This nose chip should be commercially available within 2 years, and is inexpensive, requires low power, and is very sensitive. Along with gas detection capabilities, this device may someday also be configured to detect smoke and other harmful gases. By embedding this chip into workers uniforms, name tags, etc., this could be a lifesaving computational accessory. In addition to the future safety technology soon to be available as accessories are devices that are for entertainment and security. The LCI computer group is developing a Smartpen, that electronically verifies a user's signature. With the increase in credit card use and the rise in forgeries, is the need for commercial industries to constantly verify signatures. This Smartpen writes like a normal pen but uses sensors to detect the motion of the pen as the user signs their name to authenticate the signature. This computational accessory should be available in 1999, and would bring increased peace of mind to consumers and vendors alike. In the entertainment domain, Panasonic is creating the first portable hand-held DVD player. This device weight less than 3 pounds and has a screen about 6' across. The color LCD has the same 16:9 aspect ratio of a cinema screen and supports a high resolution of 280,000 pixels and stereo sound. The player can play standard DVD movies and has a hour battery life for mobile use. To summarize, in this paper we presented concepts related to the design and use of wearable computers with extensions to smart spaces. For some time, researchers in telerobotics have used computer graphics to enhance remote scenes. Recent advances in augmented reality displays make it possible to enhance the user's local environment with 'information'. As shown in this paper, there are many application areas for this technology such as medicine, manufacturing, training, and recreation. Wearable computers allow a much closer association of information with the user. By embedding sensors in the wearable to allow it to see what the user sees, hear what the user hears, sense the user's physical state, and analyze what the user is typing, an intelligent agent may be able to analyze what the user is doing and try to predict the resources he will need next or in the near future. Using this information, the agent may download files, reserve communications bandwidth, post reminders, or automatically send updates to colleagues to help facilitate the user's daily interactions. This intelligent wearable computer would be able to act as a personal assistant, who is always around, knows the user's personal preferences and tastes, and tries to streamline interactions with the rest of the world.

  • PDF