• 제목/요약/키워드: Ant colony optimization

검색결과 140건 처리시간 0.031초

A Hybrid Method Based on Genetic Algorithm and Ant Colony System for Traffic Routing Optimization

  • Thi-Hau Nguyen;Ha-Nam Nguyen;Dang-Nhac Lu;Duc-Nhan Nguyen
    • International Journal of Computer Science & Network Security
    • /
    • 제23권8호
    • /
    • pp.85-90
    • /
    • 2023
  • The Ant Colony System (ACS) is a variant of Ant colony optimization algorithm which is well-known in Traveling Salesman Problem. This paper proposed a hybrid method based on genetic algorithm (GA) and ant colony system (ACS), called GACS, to solve traffic routing problem. In the GACS, we use genetic algorithm to optimize the ACS parameters that aims to attain the shortest trips and time through new functions to help the ants to update global and local pheromones. Our experiments are performed by the GACS framework which is developed from VANETsim with the ability of real map loading from open street map project, and updating traffic light in real-time. The obtained results show that our framework acquired higher performance than A-Star and classical ACS algorithms in terms of length of the best global tour and the time for trip.

개미 집단 최적화에서 강화와 다양화의 조화 (Balance between Intensification and Diversification in Ant Colony Optimization)

  • 이승관;최진혁
    • 한국콘텐츠학회논문지
    • /
    • 제11권3호
    • /
    • pp.100-107
    • /
    • 2011
  • 휴리스틱 탐색에서 강화(Intensification)와 다양화(Diversification)의 조화는 중요한 연구 부분이다. 본 논문에서는 개미 집단 최적화(Ant Colony Optimization, ACO) 접근법의 하나인 개미 집단 시스템(Ant Colony System, ACS)에서 강화와 다양화의 조화를 통한 성능 향상시키는 방법을 제안한다. 제안 방법은 다양화 전략으로 전역 최적 경로가 향상되지 않는 경우 반복 탐색 구간을 고려해 상태전이 규칙의 파라미터를 변경해 탐색하고, 이러한 다양화 전략을 통해 발견된 전역 최적 경로에서 이전 전역 최적 경로와 현재 전역 최적 경로의 중복 간선에 대해 페로몬을 강화시켜 탐색하는 혼합된 탐색 방법을 제안한다. 그리고, 실험을 통해 제안된 방법이 기존 ACS-3-opt 알고리즘, ACS-Subpath 알고리즘, ACS-Iter 알고리즘, ACS-Global-Ovelap 알고리즘에 비해 최적 경로 탐색 및 평균 최적 경로 탐색의 성능이 우수함을 보여 준다.

개미 집단 최적화 기법을 이용한 이동 로봇 최적 경로 생성 알고리즘 개발 (Development of a New Optimal Path Planning Algorithm for Mobile Robots Using the Ant Colony Optimization Method)

  • 고종훈;김주민;김대원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1827_1828
    • /
    • 2009
  • In this paper proposes a new algorithm for path planning using the ant colony optimization algorithm. The proposed algorithm is a new hybrid algorithm that composes of the features of the ant colony algorithm method and the Maklink graph method. At first, paths are produced for a mobile robot in a static environment, and then, the midpoints of each obstacles nodes are found using the Maklink graph method. Finally, the shortest path is selected by the ant colony optimization algorithm.

  • PDF

개미 집단 최적화 기법을 이용한 이동로봇 최적 경로 생성 알고리즘 개발 (DEVELOPMENT OF A NEW OPTIMAL PATH PLANNING ALGORITHM FOR MOBILE ROBOTS USING THE ANT COLONY OPTIMIZATION METHOD)

  • 이준오;고종훈;김대원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.311-312
    • /
    • 2007
  • This paper proposes a new algorithm for path planning and obstacles avoidance using the ant colony optimization algorithm. The proposed algorithm is a new hybrid algorithm that composes of the ant colony algorithm method and the Maklink graph method. At first, we produce the path of a mobile robot a the static environment. And then we find midpoints of each path using the Maklink graph. Finally the ant colony optimization algorithm is adopted to get a shortest path. In this paper, we prove the performance of the proposed algorithm is better than that of the Dijkstra algorithm through simulation.

  • PDF

개미 군집 최적화 알고리즘을 이용한 뇌 자기공명 영상의 영역분할 (Region Segmentation from MR Brain Image Using an Ant Colony Optimization Algorithm)

  • 이명은;김수형;임준식
    • 정보처리학회논문지B
    • /
    • 제16B권3호
    • /
    • pp.195-202
    • /
    • 2009
  • 논문에서는 개미 군집 최적화 알고리즘을 이용하여 뇌 자기공명 영상의 백질 및 회백질 영역을 분할하는 방법을 제안한다. 확률적 조합 최적화에 적합한 알고리즘으로 알려진 개미 군집 최적화 알고리즘은 실제 개미들이 집에서 먹이를 찾아가는 동안의 방법을 기억하는 습성을 적용한 것이다. 논문에서 제안하는 방법은 개미가 먹이를 찾아가는 동안의 방법을 기억하는 습성처럼 영상에서 원하는 픽셀을 찾아갈 수 있다는 것이다. 원하는 픽셀을 찾은 개미들은 페로몬을 픽셀에 축적하게 되는데 이 페로몬은 이후에 지나가는 개미들이 다음 경로를 선택할 때 영향을 준다. 그리고 각각의 반복단계에서 상태전이 법칙에 따라 영상의 위치를 바꿔가면서 최종 목적지에 도달하게 되며, 마지막으로 페로몬 분포의 분석을 통해 영상에서 분할 된 결과를 얻는다. 제안한 알고리즘을 기존의 임계치 기반의 분할 알고리즘인 Otsu 방법, 메타휴리스틱 계열의 대표적인 방법인 유전자알고리즘, 퍼지방법, 원래의 개미 군집 최적화 알고리즘등과 비교하였다. 비교 실험을 통해 제안한 방법이 뇌의 특정 영역을 더 정확하게 분할함을 알 수 있었다.

A Novel Binary Ant Colony Optimization: Application to the Unit Commitment Problem of Power Systems

  • Jang, Se-Hwan;Roh, Jae-Hyung;Kim, Wook;Sherpa, Tenzi;Kim, Jin-Ho;Park, Jong-Bae
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권2호
    • /
    • pp.174-181
    • /
    • 2011
  • This paper proposes a novel binary ant colony optimization (NBACO) method. The proposed NBACO is based on the concept and principles of ant colony optimization (ACO), and developed to solve the binary and combinatorial optimization problems. The concept of conventional ACO is similar to Heuristic Dynamic Programming. Thereby ACO has the merit that it can consider all possible solution sets, but also has the demerit that it may need a big memory space and a long execution time to solve a large problem. To reduce this demerit, the NBACO adopts the state probability matrix and the pheromone intensity matrix. And the NBACO presents new updating rule for local and global search. The proposed NBACO is applied to test power systems of up to 100-unit along with 24-hour load demands.

Metaheuristic Optimization Techniques for an Electromagnetic Multilayer Radome Design

  • Nguyen, Trung Kien;Lee, In-Gon;Kwon, Obum;Kim, Yoon-Jae;Hong, Ic-Pyo
    • Journal of electromagnetic engineering and science
    • /
    • 제19권1호
    • /
    • pp.31-36
    • /
    • 2019
  • In this study, an effective method for designing an electromagnetic multilayer radome is introduced. This method is achieved by using ant colony optimization for a continuous domain in the transmission coefficient maximization with stability for a wide angle of incidence in both perpendicular and parallel polarizations in specific X- and Ku-bands. To obtain the optimized parameter for a C-sandwich radome, particle swarm optimization algorithm is operated to give a clear comparison on the effectiveness of ant colony optimization for a continuous domain. The qualification of an optimized multilayer radome is also compared with an effective solid radome type in transmitted power stability and presented in this research.

Prolong life-span of WSN using clustering method via swarm intelligence and dynamical threshold control scheme

  • Bao, Kaiyang;Ma, Xiaoyuan;Wei, Jianming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권6호
    • /
    • pp.2504-2526
    • /
    • 2016
  • Wireless sensors are always deployed in brutal environments, but as we know, the nodes are powered only by non-replaceable batteries with limited energy. Sending, receiving and transporting information require the supply of energy. The essential problem of wireless sensor network (WSN) is to save energy consumption and prolong network lifetime. This paper presents a new communication protocol for WSN called Dynamical Threshold Control Algorithm with three-parameter Particle Swarm Optimization and Ant Colony Optimization based on residual energy (DPA). We first use the state of WSN to partition the region adaptively. Moreover, a three-parameter of particle swarm optimization (PSO) algorithm is proposed and a new fitness function is obtained. The optimal path among the CHs and Base Station (BS) is obtained by the ant colony optimization (ACO) algorithm based on residual energy. Dynamical threshold control algorithm (DTCA) is introduced when we re-select the CHs. Compared to the results obtained by using APSO, ANT and I-LEACH protocols, our DPA protocol tremendously prolongs the lifecycle of network. We observe 48.3%, 43.0%, and 24.9% more percentages of rounds respectively performed by DPA over APSO, ANT and I-LEACH.

A Comprehensive Cash Management Model for Construction Projects Using Ant Colony Optimization

  • Mohamed Abdel-Raheem;Maged E. Georgy;Moheeb Ibrahim
    • 국제학술발표논문집
    • /
    • The 5th International Conference on Construction Engineering and Project Management
    • /
    • pp.243-251
    • /
    • 2013
  • Cash management is a major concern for all contractors in the construction industry. It is arguable that cash is the most critical resource of all. A contractor needs to secure sufficient funds to navigate the project to the end, while keeping an eye on maximizing profits along the way. Past research attempted to address such topic via developing models to tackle the time-cost tradeoff problem, cash flow forecasting, and cash flow management. Yet, little was done to integrate the three aspects of cash management together. This paper, as such, presents a comprehensive model that integrates the time-cost tradeoff problem, cash flow management, and cash flow forecasting. First, the model determines the project optimal completion time by considering the different alternative construction methods available for executing project activities. Second, it investigates different funding alternatives and proposes a project-level cash management plan. Two funding alternatives are considered; they are borrowing and company own financing. The model was built as a combinatorial optimization model that utilizes ant colony search capabilities. The model also utilizes Microsoft Project software and spreadsheets to maintain an environment that incorporates activities, their durations, and other project data, in order to estimate project completion time and cost. Ant Colony Optimization algorithm was coded as a Macro program using VBA. Finally, an example project was used to test the developed model, where it acted reliably in maximizing the contractor's profit in the test project.

  • PDF

NoC-Based SoC Test Scheduling Using Ant Colony Optimization

  • Ahn, Jin-Ho;Kang, Sung-Ho
    • ETRI Journal
    • /
    • 제30권1호
    • /
    • pp.129-140
    • /
    • 2008
  • In this paper, we propose a novel ant colony optimization (ACO)-based test scheduling method for testing network-on-chip (NoC)-based systems-on-chip (SoCs), on the assumption that the test platform, including specific methods and configurations such as test packet routing, generation, and absorption, is installed. The ACO metaheuristic model, inspired by the ant's foraging behavior, can autonomously find better results by exploring more solution space. The proposed method efficiently combines the rectangle packing method with ACO and improves the scheduling results by dynamically choosing the test-access-mechanism widths for cores and changing the testing orders. The power dissipation and variable test clock mode are also considered. Experimental results using ITC'02 benchmark circuits show that the proposed algorithm can efficiently reduce overall test time. Moreover, the computation time of the algorithm is less than a few seconds in most cases.

  • PDF