• Title/Summary/Keyword: Ant Colony System Algorithm

Search Result 65, Processing Time 0.023 seconds

COMPARISON OF METAHEURISTIC ALGORITHMS FOR EXAMINATION TIMETABLING PROBLEM

  • Azimi, Zhara-Naji
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.337-354
    • /
    • 2004
  • SA, TS, GA and ACS are four of the main algorithms for solving challenging problems of intelligent systems. In this paper we consider Examination Timetabling Problem that is a common problem for all universities and institutions of higher education. There are many methods to solve this problem, In this paper we use Simulated Annealing, Tabu Search, Genetic Algorithm and Ant Colony System in their basic frameworks for solving this problem and compare results of them with each other.

A Reinforcement Loaming Method using TD-Error in Ant Colony System (개미 집단 시스템에서 TD-오류를 이용한 강화학습 기법)

  • Lee, Seung-Gwan;Chung, Tae-Choong
    • The KIPS Transactions:PartB
    • /
    • v.11B no.1
    • /
    • pp.77-82
    • /
    • 2004
  • Reinforcement learning takes reward about selecting action when agent chooses some action and did state transition in Present state. this can be the important subject in reinforcement learning as temporal-credit assignment problems. In this paper, by new meta heuristic method to solve hard combinational optimization problem, examine Ant-Q learning method that is proposed to solve Traveling Salesman Problem (TSP) to approach that is based for population that use positive feedback as well as greedy search. And, suggest Ant-TD reinforcement learning method that apply state transition through diversification strategy to this method and TD-error. We can show through experiments that the reinforcement learning method proposed in this Paper can find out an optimal solution faster than other reinforcement learning method like ACS and Ant-Q learning.

A Classification Algorithm Using Ant Colony System (개미 군락 시스템을 이용한 영역 분류 알고리즘)

  • Kim, In-Kyeom;Yun, Min-Young
    • The KIPS Transactions:PartB
    • /
    • v.15B no.3
    • /
    • pp.245-252
    • /
    • 2008
  • We present a classification algorithm based on ant colony system(ACS) for classifying digital images. The ACS has been recently emerged as a useful tool for the pattern recognition, image extraction, and edge detection. The classification algorithm of digital images is very important in the application areas of digital image coding, image analysis, and image recognition because it significantly influences the quality of images. The conventional procedures usually classify digital images with the fixed value for the associated parameters and it requires postprocessing. However, the proposed algorithm utilizing randomness of ants yields the stable and enhanced images even for processing the rapidly changing images. It is also expected that, due to this stability and flexibility of the present procedure, the digital images are stably classified for processing images with various noises and error signals arising from processing of the drastically fast moving images could be automatically compensated and minimized.

An Ant System Extrapolated Genetic Algorithm (개미 알고리즘을 융합한 적응형 유전알고리즘)

  • Kim Joong Hang;Lee Se-Young;Chang Hyeong Soo
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.8
    • /
    • pp.399-410
    • /
    • 2005
  • This paper Proposes a novel adaptive genetic algorithm (GA) extrapolated by an ant colony optimization. We first prove that the algorithm converges to the unique global optimal solution with probability arbitrarily close to one and then, by experimental studies, show that the algorithm converges faster to the optimal solution than GA with elitism and the population average fitness value also converges to the optimal fitness value. We further discuss controlling the tradeoff of exploration and exploitation by a parameter associated with the proposed algorithm.

Improved Ant Colony System for the Traveling Salesman Problem (방문판매원 문제에 적용한 개선된 개미 군락 시스템)

  • Kim, In-Kyeom;Yun, Min-Young
    • The KIPS Transactions:PartB
    • /
    • v.12B no.7 s.103
    • /
    • pp.823-828
    • /
    • 2005
  • Ant Colony System (ACS) applied to the traveling salesman problem (TSP) has demonstrated a good performance on the small TSP. However, in case of the large TSP. ACS does not yield the optimum solution. In order to overcome the drawback of the An for the large TSP, the present study employs the idea of subpath to give more irormation to ants by computing the distance of subpath with length u. in dealing with the large TSP, the experimental results indicate that the proposed algorithm gives the solution much closer to the optimal solution than does the original ACS. In comparison with the original ACS, the present algorithm has substantially improved the performance. By utilizing the proposed algorithm, the solution performance has been enhanced up to $70\%$ for some graphs and around at $30\%$ for averaging over all graphs.

Multi Colony Ant Model using Positive.Negative Interaction between Colonies (집단간 긍정적.부정적 상호작용을 이용한 다중 집단 개미 모델)

  • Lee, Seung-Gwan;Chung, Tae-Choong
    • The KIPS Transactions:PartB
    • /
    • v.10B no.7
    • /
    • pp.751-756
    • /
    • 2003
  • Ant Colony Optimization (ACO) is new meta heuristics method to solve hard combinatorial optimization problem. It is a population based approach that uses exploitation of positive feedback as well as greedy search. It was firstly proposed for tackling the well known Traveling Salesman Problem (TSP) . In this paper, we introduce Multi Colony Ant Model that achieve positive interaction and negative interaction through Intensification and Diversification to improve original ACS performance. This algorithm is a method to solve problem through interaction between ACS groups that consist of some agent colonies to solve TSP problem. In this paper, we apply this proposed method to TSP problem and evaluates previous method and comparison for the performance and we wish to certify that qualitative level of problem solution is excellent.

Performance Improvement of Cooperating Agents through Balance between Intensification and Diversification (강화와 다양화의 조화를 통한 협력 에이전트 성능 개선에 관한 연구)

  • 이승관;정태충
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.6
    • /
    • pp.87-94
    • /
    • 2003
  • One of the important fields for heuristic algorithm is how to balance between Intensification and Diversification. Ant Colony Optimization(ACO) is a new meta heuristic algorithm to solve hard combinatorial optimization problem. It is a population based approach that uses exploitation of positive feedback as well as Breedy search It was first Proposed for tackling the well known Traveling Salesman Problem(TSP). In this paper, we deal with the performance improvement techniques through balance the Intensification and Diversification in Ant Colony System(ACS). First State Transition considering the number of times that agents visit about each edge makes agents search more variously and widen search area. After setting up criteria which divide elite tour that receive Positive Intensification about each tour, we propose a method to do addition Intensification by the criteria. Implemetation of the algorithm to solve TSP and the performance results under various conditions are conducted, and the comparision between the original An and the proposed method is shown. It turns out that our proposed method can compete with the original ACS in terms of solution quality and computation speed to these problem.

A Study on Methodology of the Snow Removal Operation of Air Wing Using Hybrid ACS Algorithm (하이브리드 ACS 알고리즘을 이용한 군 비행단 제설작전 방법연구)

  • Choi, Jung-Rock;Kim, Gak-Gyu;Lee, Sang-Heon
    • Korean Management Science Review
    • /
    • v.30 no.2
    • /
    • pp.31-42
    • /
    • 2013
  • The vehicle routing problem (VRP) can be described as a problem to find the optimum traveling routes from one or several depot (s) to number of geographically scattered customers. This study executes a revised Heterogeneous Vehicle Routing Problem (HVRP) to minimize the cost that needs to conduct efficiently the snow removal operations of Air Wing under available resources and limited operations time. For this HVRP, we model the algorithm of an hybrid Ant Colony System (ACS). In the initial step for finding a solution, the modeled algorithm applies various alterations of a parameter that presents an amount of pheromone coming out from ants. This improvement of the initial solution illustrates to affect to derive better result ultimately. The purpose of this study proves that the algorithm using Hybrid heuristic incorporated in tabu and ACS develops the early studies to search best solution.

Swarm Intelligence-based Power Allocation and Relay Selection Algorithm for wireless cooperative network

  • Xing, Yaxin;Chen, Yueyun;Lv, Chen;Gong, Zheng;Xu, Ling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1111-1130
    • /
    • 2016
  • Cooperative communications can significantly improve the wireless transmission performance with the help of relay nodes. In cooperative communication networks, relay selection and power allocation are two key issues. In this paper, we propose a relay selection and power allocation scheme RS-PA-PSACO (Relay Selection-Power Allocation-Particle Swarm Ant Colony Optimization) based on PSACO (Particle Swarm Ant Colony Optimization) algorithm. This scheme can effectively reduce the computational complexity and select the optimal relay nodes. As one of the swarm intelligence algorithms, PSACO which combined both PSO (Particle Swarm Optimization) and ACO (Ant Colony Optimization) algorithms is effective to solve non-linear optimization problems through a fast global search at a low cost. The proposed RS-PA-PSACO algorithm can simultaneously obtain the optimal solutions of relay selection and power allocation to minimize the SER (Symbol Error Rate) with a fixed total power constraint both in AF (Amplify and Forward) and DF (Decode and Forward) modes. Simulation results show that the proposed scheme improves the system performance significantly both in reliability and power efficiency at a low complexity.

Handwritten Numerals Recognition Using an Ant-Miner Algorithm

  • Phokharatkul, Pisit;Phaiboon, Supachai
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1031-1033
    • /
    • 2005
  • This paper presents a system of handwritten numerals recognition, which is based on Ant-miner algorithm (data mining based on Ant colony optimization). At the beginning, three distinct fractures (also called attributes) of each numeral are extracted. The attributes are Loop zones, End points, and Feature codes. After these data are extracted, the attributes are in the form of attribute = value (eg. End point10 = true). The extraction is started by dividing the numeral into 12 zones. The numbers 1-12 are referenced for each zone. The possible values of Loop zone attribute in each zone are "true" and "false". The meaning of "true" is that the zone contains the loop of the numeral. The Endpoint attribute being "true" means that this zone contains the end point of the numeral. There are 24 attributes now. The Feature code attribute tells us how many lines of a numeral are passed by the referenced line. There are 7 referenced lines used in this experiment. The total attributes are 31. All attributes are used for construction of the classification rules by the Ant-miner algorithm in order to classify 10 numerals. The Ant-miner algorithm is adapted with a little change in this experiment for a better recognition rate. The results showed the system can recognize all of the training set (a thousand items of data from 50 people). When the unseen data is tested from 10 people, the recognition rate is 98 %.

  • PDF