• Title/Summary/Keyword: Ansys 10

Search Result 1,411, Processing Time 0.026 seconds

Flexural behaviour of fibre reinforced geopolymer concrete composite beams

  • Vijai, K.;Kumutha, R.;Vishnuram, B.G.
    • Computers and Concrete
    • /
    • v.15 no.3
    • /
    • pp.437-459
    • /
    • 2015
  • An experimental investigation on the behaviour of geopolymer composite concrete beams reinforced with conventional steel bars and various types of fibres namely steel, polypropylene and glass in different volume fractions under flexural loading is presented in this paper. The cross sectional dimensions and the span of the beams were same for all the beams. The first crack load, ultimate load and the loaddeflection response at various stages of loading were evaluated experimentally. The details of the finite element analysis using "ANSYS 10.0" program to predict the load-deflection behavior of geopolymer composite reinforced concrete beams on significant stages of loading are also presented. Nonlinear finite element analysis has been performed and a comparison between the results obtained from finite element analysis (FEA) and experiments were made. Analytical results obtained using ANSYS were also compared with the calculations based on theory and presented.

Comparative study of Metallic and Polymer Composite Shells for Underwater Vessels Using FEA

  • Govindaraj, Moorthy;Narayanarao, Narasimha Murthy Heddale;Munishaiah, Krishna;Nagappa, Raghavendra
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.3
    • /
    • pp.136-141
    • /
    • 2013
  • The present research was aimed at comparing performance of metallic and polymer composite shells of a typical underwater vessel of length and inner diameter of 1650 mm and 350 mm respectively, based on the critical buckling pressure for operating depth of 1000 m using ANSYS. High strength steel, aluminium alloy, titanium alloy, glass / epoxy and carbon / epoxy materials were examined. The results indicated weight savings of 46 % in carbon/epoxy and 31 % in glass / epoxy when compared with high strength steel, based on the thickness of the shell for sustaining 10 MPa buckling pressure.

A Study of Vertical Axis Wind Turbine (수직축 풍력터빈에 관한 연구)

  • park, Jung-Cheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.5
    • /
    • pp.389-395
    • /
    • 2017
  • This paper showed the difference in the optimum conditions by using the ANSYS CFX simulation program with the changes of the main-blade angle and sub-blade angle. Main-blade Shape 4,which had angle $45^{\circ}$ while other Shapes with angle $0^{\circ}$, was increased to 157.2[%] to 263.2[%] in the power and was increased to 110[%] to 250[%] in the power coefficient. Moreover, when the Shape 5 Fin length of main-blade doubled, the power was 70.8[%] when compared with Shape 1 and 27.5[%] with shape 4.If the main-blade geometry equals shape 1 in the case structure, The power of Case1 was increased to 13.3[%] when compared with Case2. Also, the power coefficient was increased to 15.4[%]. When sub-blade angle was $45^{\circ}$, main-blade was better than the Fin type than the Bended type. The power of Case4 was increased to 47[%] when compared with Csae1 and increased to 13.6[%] with Case 3. Also, the power coefficient was 46.7[%] when compared with Case 1 and 15.8[%] with Case 3.

A Study on Flow Characteristics about Valve Filter for Electronic System Solenoid Structure (차량용 전자식 솔레노이드 밸브 필터간의 유동특성에 관한 연구)

  • Kim, Byeong-Jun;Cho, Haeng-Muk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1294-1298
    • /
    • 2014
  • Comparative analysis study of the flow characteristics and the experiment was done to try to present the orientation of the solenoid structure to be produced in the future. The comparative analysis of the analysis and experimental values was performed using the experiments and ANSYS CFD. 3D modeling of the structure are designed by the CATIA V5R18, meshing process of the flow section was used by ICEM CFD program. Flow rate was indicated by using the experimental values appear in $0-10{\ell}/min$, the result of the flow analysis, was $0.18{\ell}/min$ Max. It was possible to suggest a solenoid structure more efficient through comparative analysis of experimental values and flow analysis.

Evaluation of Fatigue Life and Structural Analysis for Dish-Type and Spoke-Type Automobile Wheels (승용차용 디쉬 타입과 스포크 타입 휠에 대한 구조 해석과 피로 수명 예측)

  • Kang, Sung-Soo;Lee, Jong-Hwa
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1315-1321
    • /
    • 2011
  • Prior to the experimental and production stages of goods, the strengths should be evaluated in the design stage. The introduction of commercial codes at the design stage gives benefits such as cost and time economies in the production and strength evaluation. In this study, structural analysis and fatigue analysis are carried out using ANSYS modeling of the 3D geometry of the wheel. In a comparison of dish-type and spoke-type wheels, it is shown that the deformation and maximum equivalent stress for the dish-type wheels are lower than those for spoke-type wheels. Nevertheless, spoke-type wheels are often used because they are light and have exhibit excellent cooling performance. Furthermore, according to the results of life analysis, aluminum wheels show improved resistance to fatigue compared to steel wheels.

Three Dimensional Electro-Fluid-Structural Interaction Simulation for Pumping Performance Evaluation of a Valveless Micropump (무밸브 마이크로 펌프의 성능평가를 위한 3차원 전기-유체-구조 상호작용 해석)

  • Pham, My;Phan, Van Phuoc;Han, Cheol-Heui;Goo, Nam-Seo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.8
    • /
    • pp.744-750
    • /
    • 2009
  • In this study, the pumping performance of a piezoelectric valveless micropump is simulated. The micropump, which was developed in the previous work, is composed of a four-layer lightweight piezocomposite actuator, a polydimethylsiloxane (PDMS) pump chamber, and two diffusers. The piezoelectric domain, the fluid domain and the structural domain are coupled in the three-dimensional simulation. We used ANSYS for the piezoelectric and structural domains and ANSYS CFX for the fluid domain. The effects of driven frequency on the flow rate have been investigated by simulating the flow characteristics for 10 Hz and 40 Hz driven frequencies. The flow rates with respect to driven frequencies up to 300 Hz have been calculated.

A Study of 50kW Wind Turbine by Using ANSYS Program (ANSYS 프로그램을 이용한 50kW급 풍력터빈에 관한 연구)

  • Lee, Dal-Ho;Park, Jung-Cheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.3
    • /
    • pp.198-204
    • /
    • 2022
  • In this paper, the 5kW and 50kW vertical axis wind turbines were studied using the ANSYS flow analysis simulation program. The 5 kW vertical shaft wind turbine has 30 units of the number of main blades and sub-blades and the electrical characteristics were analyzed by changing the tip speed ratio (TSR) from 0.2 to 06. A 50kW vertical axis wind turbine was designed based on the electrical characteristics of a 5kW vertical axis wind turbine. When the tip speed ratio was 0.5, the 5 kW wind power generation showed the maximum output of 9.5 kW and the efficiency of 0.28. The calculation of the power current(Ip) and the power voltage(Ep) show that, as the tip speed ratio increases, the power current(Ip) decreases and the power voltage(Ep) increases. And even if the tip speed ratio was changed, 5kW wind power generation was measured for output of 5 kW or higher. When the tip speed ratio was changed from 0.3 to 0.6, 50 kW wind power generation was output more than 50 kW. When the tip speed ratio of 50kW wind power generation was 0.4, the output was 58.37 [kW] and the efficiency was 0.318, and it was confirmed that the proposed 50kW wind power generation satisfies the design conditions.

Visualization of Unsteady DC Electro-osmotic flow by using Methods of Coupling Fortran and CFX Codes (포트란-CFX 연동해석 기법을 이용한 비정상 DC 전기삼투 유동 가시화)

  • Heo, Young-Gun;Jeong, Jong-Hyeon;Suh, Yong-Kweon
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.4
    • /
    • pp.22-27
    • /
    • 2011
  • In this study, we present methods of coupling a commercial code, ANSYS CFX, and the user Fortran codes for solving an unsteady electro-osmotic flow around a pair of electrodes, receiving DC, attached to the top and the bottom walls of a two-dimensional cavity. We developed a module of Fortran programs for solving the ion-transport equations as well as the Poisson equations for the potential to be used in coupling with the CFX. We present how the developed codes are applied to solving the transient DC electro-osmotic flow problem within a simple cavity. We also address various problems encountered during the development process and explain why such problems are raised.

The thermal effect on electrical capacitance sensor for two-phase flow monitoring

  • Altabey, Wael A.
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.4
    • /
    • pp.335-347
    • /
    • 2016
  • One of major errors in flow rate measurement for two-phase flow using an Electrical Capacitance Sensor (ECS) concerns sensor sensitivity under temperature raise. The thermal effect on electrical capacitance sensor (ECS) system for air-water two-phase flow monitoring include sensor sensitivity, capacitance measurements, capacitance change and node potential distribution is reported in this paper. The rules of 12-electrode sensor parameters such as capacitance, capacitance change, and change rate of capacitance and sensitivity map the basis of Air-water two-phase flow permittivity distribution and temperature raise are discussed by ANSYS and MATLAB, which are combined to simulate sensor characteristic. The cross-sectional void fraction as a function of temperature is determined from the scripting capabilities in ANSYS simulation. The results show that the temperature raise had a detrimental effect on the electrodes sensitivity and sensitive domain of electrodes. The FE results are in excellent agreement with an experimental result available in the literature, thus validating the accuracy and reliability of the proposed flow rate measurement system.

A Study on the Multi-Objective Optimization of Impeller for High-Power Centrifugal Compressor

  • Kang, Hyun-Su;Kim, Youn-Jea
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.2
    • /
    • pp.143-149
    • /
    • 2016
  • In this study, a method for the multi-objective optimization of an impeller for a centrifugal compressor using fluid-structure interaction (FSI) and response surface method (RSM) was proposed. Numerical simulation was conducted using ANSYS CFX and Mechanical with various configurations of impeller geometry. Each design parameter was divided into 3 levels. A total of 15 design points were planned using Box-Behnken design, which is one of the design of experiment (DOE) techniques. Response surfaces based on the results of the DOE were used to find the optimal shape of the impeller. Two objective functions, isentropic efficiency and equivalent stress were selected. Each objective function is an important factor of aerodynamic performance and structural safety. The entire process of optimization was conducted using the ANSYS Design Xplorer (DX). The trade-off between the two objectives was analyzed in the light of Pareto-optimal solutions. Through the optimization, the structural safety and aerodynamic performance of the centrifugal compressor were increased.