• 제목/요약/키워드: Ansys

검색결과 2,187건 처리시간 0.025초

Conceptual design of small modular reactor driven by natural circulation and study of design characteristics using CFD & RELAP5 code

  • Kim, Mun Soo;Jeong, Yong Hoon
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2743-2759
    • /
    • 2020
  • A detailed computational fluid dynamics (CFD) simulation analysis model was developed using ANSYS CFX 16.1 and analyzed to simulate the basic design and internal flow characteristics of a 180 MW small modular reactor (SMR) with a natural circulation flow system. To analyze the natural circulation phenomena without a pump for the initial flow generation inside the reactor, the flow characteristics were evaluated for each output assuming various initial powers relative to the critical condition. The eddy phenomenon and the flow imbalance phenomenon at each output were confirmed, and a flow leveling structure under the core was proposed for an optimization of the internal natural circulation flow. In the steady-state analysis, the temperature distribution and heat transfer speed at each position considering an increase in the output power of the core were calculated, and the conceptual design of the SMR had a sufficient thermal margin (31.4 K). A transient model with the output ranging from 0% to 100% was analyzed, and the obtained values were close to the Thot and Tcold temperature difference value estimated in the conceptual design of the SMR. The K-factor was calculated from the flow analysis data of the CFX model and applied to an analysis model in RELAP5/MOD3.3, the optimal analysis system code for nuclear power plants. The CFX analysis results and RELAP analysis results were evaluated in terms of the internal flow characteristics per core output. The two codes, which model the same nuclear power plant, have different flow analysis schemes but can be used complementarily. In particular, it will be useful to carry out detailed studies of the timing of the steam generator intervention when an SMR is activated. The thermal and hydraulic characteristics of the models that applied porous media to the core & steam generators and the models that embodied the entire detail shape were compared and analyzed. Although there were differences in the ability to analyze detailed flow characteristics at some low powers, it was confirmed that there was no significant difference in the thermal hydraulic characteristics' analysis of the SMR system's conceptual design.

Performance and heat transfer analysis of turbochargers using numerical and experimental methods

  • Pakbin, Ali;Tabatabaei, Hamidreza;Nouri-Bidgoli, Hossein
    • Steel and Composite Structures
    • /
    • 제43권5호
    • /
    • pp.523-532
    • /
    • 2022
  • Turbocharger technology is one of the ways to survive in a competitive market that is facing increasing demand for fuel and improving the efficiency of vehicle engines. Turbocharging allows the engine to operate at close to its maximum power, thereby reducing the relative friction losses. One way to optimally understand the behavior of a turbocharger is to better understand the heat flow. In this paper, a 1.7 liter, 4 cylinder and 16 air valve gasoline engine turbocharger with compressible, viscous and 3D flow was investigated. The purpose of this paper is numerical investigation of the number of heat transfer in gasoline engines turbochargers under 3D flow and to examine the effect of different types of coatings on its performance; To do this, modeling of snail chamber and turbine blades in CATIA and simulation in ANSYS-FLUENT software have been used to compare the results of turbine with experimental results in both adiabatic and non-adiabatic (heat transfer) conditions. It should be noted that the turbine blades are modeled using multiple rotational coordinate methods. In the experimental section, we simulated our model without coating in two states of adiabatic and non-adiabatic. Then we matched our results with the experimental results to prove the validation of the model. Comparison of numerical and experimental results showed a difference of 8-10%, which indicates the accuracy and precision of numerical results. Also, in our studies, we concluded that the highest effective power of the turbocharged engine is achieved in the adiabatic state. We also used three types of SiO2, Sic and Si3N4 ceramic coatings to investigate the effect of insulating coatings on turbine shells to prevent heat transfer. The results showed that SiO2 has better results than the other two coatings due to its lower heat transfer coefficient.

SNCM439재질의 전차용 엔진클러치 암플랜지 개발 (Development of Engine Clutch Female Flange for Tank Using SNCM439 Material)

  • 김중선;권대규;안석영
    • 한국기계가공학회지
    • /
    • 제20권11호
    • /
    • pp.67-73
    • /
    • 2021
  • Tanks are key weapons of ground combat that are equipped with powerful weapons and have strong protective bodies. One tank component, the engine clutch flange, is located in the part of the tank where the engine and transmission are installed, and it is a key part of the power transfer and shutoff. The engine clutch flange transmits high power to secure the mobility of the tank; thus, it must have high strength and hardness. In addition, high durability and safety must be ensured because tank operations must exclude concerns about damage. In this study, an engine clutch female flange for tanks made of SNCM439 was developed. The 2D design used AutoCAD programs, and the 3D shape design used CATIA programs. The structural analysis was conducted using ANSYS. The mesh grid has a tetrahedron shape and is created by adding a mid-side node. After the mechanical properties and constraints of SNCM439 were entered, the changes in the safety factor, total deformation, and Von-Mises stress were identified according to the increase in torque. Prototype processing was performed to verify the engine clutch female flange for the tank. To determine the productivity of the product, the cutting processing time was measured when processing the prototypes. Based on the results of measuring the cutting processing time, it is concluded that research is needed to improve productivity because MCT slot cutting processing is time consuming.

Influences of guideway geometry parameters and track irregularity on dynamic performances of suspended monorail vehicle-guideway system

  • He, Qinglie;Yang, Yun;Cai, Chengbiao;Zhu, Shengyang
    • Structural Engineering and Mechanics
    • /
    • 제82권1호
    • /
    • pp.1-16
    • /
    • 2022
  • This work elaborately investigates the influences of the guideway geometry parameters and track irregularity on the dynamic performances of the suspended monorail vehicle-guideway system (SMVGS). Firstly, a spatial dynamic analysis model of the SMVGS is established by adopting ANSYS parameter design language. Then, the dynamic interaction between a vehicle with maximum design load and guideway is investigated by numerical simulation and field tests, revealing the vehicle-guideway dynamic features. Subsequently, the influences of the guideway geometry parameters and track irregularity on the dynamic performances of the SMVGS are analyzed and discussed in detail, and the reasonable ranges of several key geometry parameters of the guideway are also obtained. Results show that the vehicle-guideway dynamic responses change nonlinearly with an increase of the guideway span, and especially the guideway dynamic performances can be effectively improved by reducing the guideway span; based on a comprehensive consideration of all performance indices of the SMVGS, the deflection-span ratio of the suspended monorail guideway is finally recommended to be 1/1054~1/868. The train load could cause a large bending deformation of the pier, which would intensify the car-body lateral displacement and decrease the vehicle riding comfort; to well limit the bending deformation of the pier, its cross-section dimension is suggested to be more than 0.8 m×0.8 m. The addition of the track irregularity amplitude has small influences on the displacements and stress of the guideway; however, it would significantly increase the vehicle-guideway vibrations and rate of load reduction of the driving tyre.

A case study of protecting bridges against overheight vehicles

  • Aly, Aly Mousaad;Hoffmann, Marc A.
    • Steel and Composite Structures
    • /
    • 제43권2호
    • /
    • pp.165-183
    • /
    • 2022
  • Most transportation departments have recognized and developed procedures to address the ever-increasing weights of trucks traveling on bridges in a service today. Transportation agencies also recognize the issues with overheight vehicles' collisions with bridges, but few stakeholders have definitive countermeasures. Bridges are becoming more vulnerable to collisions from overheight vehicles. The exact response under lateral impact force is difficult to predict. In this paper, nonlinear impact analysis shows that the degree of deformation recorded through the modeling of the unprotected vehicle-girder model provides realistic results compared to the observation from the US-61 bridge overheight vehicle impact. The predicted displacements are 0.229 m, 0.161 m, and 0.271 m in the girder bottom flange (lateral), bottom flange (vertical), and web (lateral) deformations, respectively, due to a truck traveling at 112.65 km/h. With such large deformations, the integrity of an impacted bridge becomes jeopardized, which in most cases requires closing the bridge for safety reasons and a need for rehabilitation. We proposed different sacrificial cushion systems to dissipate the energy of an overheight vehicle impact. The goal was to design and tune a suitable energy absorbing system that can protect the bridge and possibly reduce stresses in the overheight vehicle, minimizing the consequences of an impact. A material representing a Sorbothane high impact rubber was chosen and modeled in ANSYS. Out of three sacrificial schemes, a sandwich system is the best in protecting both the bridge and the overheight vehicle. The mitigation system reduced the lateral deflection in the bottom flange by 89%. The system decreased the stresses in the bridge girder and the top portion of the vehicle by 82% and 25%, respectively. The results reveal the capability of the proposed sacrificial system as an effective mitigation system.

전산해석을 이용한 산업용 오일펌프 성능개선에 관한 연구 (A Study on Performance Improvement of Industrial Oil Pump Using Computational Analysis)

  • 김진우;이현준;공석환;이성원;정원지
    • 한국산업융합학회 논문집
    • /
    • 제25권6_2호
    • /
    • pp.1111-1117
    • /
    • 2022
  • Recently, interest in the circular economy has emerged in the industry. As a result, interest in Re-manufacturing, which makes old equipment similar to new products, is growing. In the machine tool industry with many aging equipment, the Re-manufacturing industry is essential, and among them, research on the performance improvement of gear type oil pumps was conducted. The purpose was to achieve the target performance of flow rate and volume efficiency by changing the shape of the gear pump housing clearance and inlet/outlet, and Computational Fluid Analysis and Central Composite Design were conducted using ANSYS CFX 2022 R2 and MINITAB®. The level of each determined factor was determined. 20 design points were derived, and the Flow Rate at each design point was calculated, and the Theoretical Flow Rate was calculated to obtain Volumetric Efficiency. The optimal design point was obtained when the Flow Rate was 140 lpm and the Volumetric Efficiency was maximum, the optimal design point was obtained when both were maximum, and the Surface Plot for each factor was obtained to identify the tendency.

시뮬레이션 기반 3차원 엮임 재료의 물성치 분석 및 인공 신경망 해석 (Simulation-Based Material Property Analysis of 3D Woven Materials Using Artificial Neural Network)

  • 김병모;하승현
    • 한국전산구조공학회논문집
    • /
    • 제36권4호
    • /
    • pp.259-264
    • /
    • 2023
  • 본 논문에서는 3차원 엮임 재료의 재료 물성치들을 효율적으로 분석하고 추후 최적설계 연구에 활용하기 위해서 파라메트릭 배치 해석 워크플로우를 제시하였다. 3차원 엮임 재료를 구성하는 와이어들 사이의 간격을 설계 매개변수로 하는 파라메트릭 모델에 대해서 임의의 변수 조합을 가지는 2,500개의 수치 모델을 생성하였으며, 상용 프로그램인 매트랩과 앤시스의 여러 모듈을 사용하여 체적탄성계수, 열전도도, 유체투과율과 같은 다양한 재료 물성치들을 배치 해석을 통해서 자동으로 얻어질 수 있도록 구성하였다. 이와 같이 얻어진 대용량의 재료 물성치 데이터베이스를 활용해서 회귀 분석을 수행하였으며, 그 결과 설계 변수들과 재료 물성치 사이의 경향성과 수치 해석 결과의 정확도를 검증하였다. 또한 확보된 데이터베이스를 통해서 3차원 엮임 재료의 물성치를 예측할 수 있는 인공 신경망을 구성하고 학습시켰으며, 그 결과 임의의 설계 매개변수 값들을 가지는 엮임 재료 모델에 대해서 구조 및 유체해석 과정 없이도 높은 정확도로 재료 물성치들을 추정할 수 있음을 확인하였다.

A computer based simulation model for the fatigue damage assessment of deep water marine riser

  • Pallana, Chirag A.;Sharma, Rajiv
    • Ocean Systems Engineering
    • /
    • 제12권1호
    • /
    • pp.87-142
    • /
    • 2022
  • An analysis for the computation of Fatigue Damage Index (FDI) under the effects of the various combination of the ocean loads like random waves, current, platform motion and VIV (Vortex Induced Vibration) for a certain design water depth is a critically important part of the analysis and design of the marine riser platform integrated system. Herein, a 'Computer Simulation Model (CSM)' is developed to combine the advantages of the frequency domain and time domain. A case study considering a steel catenary riser operating in 1000 m water depth has been conducted with semi-submersible. The riser is subjected to extreme environmental conditions and static and dynamic response analyses are performed and the Response Amplitude Operators (RAOs) of the offshore platform are computed with the frequency domain solution. Later the frequency domain results are integrated with time domain analysis system for the dynamic analysis in time domain. After that an extensive post processing is done to compute the FDI of the marine riser. In the present paper importance is given to the nature of the current profile and the VIV. At the end we have reported the detail results of the FDI comparison with VIV and without VIV under the linear current velocity and the FDI comparison with linear and power law current velocity with and without VIV. We have also reported the design recommendations for the marine riser in the regions where the higher fatigue damage is observed and the proposed CSM is implemented in industrially used standard soft solution systems (i.e., OrcaFlex*TM and Ansys AQWA**TM), Ms-Excel***TM, and C++ programming language using its object oriented features.

단이 진 인장부재 필릿과 구멍사이 응력집중에 관한 광탄성법 해석 (Analysis of Stress Concentration between Fillet and Hole in a Stepped Plate under Tensile Load by Photoelasticity)

  • 백태현;김명수;김영철
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제5권2호
    • /
    • pp.207-214
    • /
    • 2015
  • 기계구조물 부재의 단면에 구멍이 있거나 단면이 갑자기 변화하는 경우, 응력집중이 발생되며 대부분 재료의 파손에 매우 중요한 원인이 된다. 단면의 급격한 변화로 집중하중이 작용되는 지점 근방에서의 응력은 부재의 평균응력보다 훨씬 크게 작용하기 때문이다. 본 논문에서는 인장하중을 받는 단이 진 판재 모서리의 필릿과 구멍사이의 응력집중에 대해 살펴보았다. 응력 집중의 상호 작용 효과에 대해서 광탄성실험법과 상용 유한요소 소프트웨어 ANSYS로 해석하였다. 해석 결과로부터, 필렛 반경에서 서로 다른 위치에 있는 구멍은 상호 간섭작용으로 상이한 응력집중계수 값들을 일으킬 수 있다.

수직하중에 의한 응력이 CMP 공정의 디싱에 미치는 영향 (Investigation of the Relationship Between Dishing and Mechanical Stress During CMP Process )

  • 김형구;김승현;김민우;임익태
    • 반도체디스플레이기술학회지
    • /
    • 제22권2호
    • /
    • pp.30-34
    • /
    • 2023
  • Since dishing in the CMP process is a major factor that hinders the uniformity of the semiconductor thin film, many studies have focused this issue to improve the non-uniformity of the film due to dishing. In the metal layer, the dishing mainly occurs in the central part of the metal due to a difference in a selection ratio between the metal and the dielectric, thereby generating a step on the surface of the metal layer. Factors that cause dishing include the shape of the thin film, the chemical reaction of the slurry, thermal deformation, and the rotational speed of the pad and head, and dishing occurs due to complex interactions between them. This study analyzed the stress generated on the metal layer surface in the CMP process using ANSYS software, a commercial structure analysis program. The stress caused by the vertical load applied from the pad was analyzed by changing the area density and line width of the dummy metal. As a result of the analysis, the stress in the active region decreased as the pattern density and line width of the dummy metal increased, and it was verified that it was valid compared with the previous study that studied the dishing according to the dummy pattern density and line width of the metal layer. In conclusion, it was confirmed that there is a relationship between dishing and normal stress.

  • PDF