• Title/Summary/Keyword: Anoxic

Search Result 443, Processing Time 0.026 seconds

Study on Organic Matter and Nitrogen Removal by Biological Treatment of Wastewater Processing of Chicken, which is the Primary Chemical Processing (1차 화학 처리된 닭 가공 폐수의 생물학적 처리에 의한 유기물 및 질소제거에 관한 연구)

  • Han, Hyung Suk;Choi, Yong Gu;Song, Jin Ho;Kim, Ho
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.3
    • /
    • pp.247-256
    • /
    • 2014
  • A company, which is chicken butcherying-plant, was scheduled to increase up to twice output. We researched the way to increase up to twice the processing efficiency at the target biological treatment tank of A company. We performed for this study to obtain the reason why organic matter and nitrogen removal efficiency is increased when MLSS concentration is increased. It's performed at the target of pressure flotation water on SBR system. We performed the research which MLSS was 12,700 mg/L for 30hours (in aerobic condition for 25 hours and in anoxic condition for 5 hours). As a result, the nitrification was happened completely in aerobic condition within 25 hours. Denitrification efficiency was also over 90% when C/N ratio was over 3:1. After the experiment, we changed the concentration of MLSS 5,600 to 12,700 mg/L. In condition MLSS was about 11,000 mg/L and HRT were 30 hours meet the Effluent quality standard.

Evaluating Effects of Membrane Filter Pore Sizes on Determination of Dissolved Concentrations of Major Elements in Groundwater and Surface Water Near Nakdong River (낙동강변 지하수 및 지표수의 주요원소 용존 농도 결정에 대한 막필터 공극 크기의 영향 분석)

  • Kim, Bo-A;Koh, Dong-Chan;Ha, Kyoochul
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.4
    • /
    • pp.31-40
    • /
    • 2015
  • Various types of inorganic and organic colloids are present in natural water including groundwater. Previous studies showed that Fe, Mn and Al are colloid-forming elements and dissolved concentrations can be erroneous for these elements if water samples are not properly filtered. Dissolved concentrations of elements including Ca, Na, Mg, K, Fe, Mn, Si and Al in groundwater from alluvial and bedrock aquifers, and surface water near Nakdong River were determined to evaluate effects of colloids on dissolved concentrations in natural water samples using various pore sizes of filters. Groundwater is mostly anoxic and have elevated concentrations of Fe and Mn, which provides a unique opportunity to observe the effects of colloids on dissolved concentrations of colloid-forming elements. Membrane filters with four kinds of pore sizes of 1000 nm, 450 nm, 100 nm, and 15 nm were used for filtration of water samples. Concentrations of dissolved concentrations in each filtrate did not show significant differences from 1000 nm to 100 nm. However, concentrations of all elements considered were decreased in the filtrates obtained using 15 nm pore size filters by 10 to 15% compared to those using 450 nm except for bedrock groundwater. Al in surface water showed a distinct linear decrease with the decrease of filter pore sizes. These results showed that 100 nm pore size had little effect to remove colloidal particles in alluvial groundwater and surface water in our study. In contrast, significant concentration decreases in 15 nm pore size filtrates indicate that the presence of 15 to 100 nm colloidal particles may affect determination of dissolved concentrations of elements in natural water.

Three-Dimensional Water Quality Modeling of Chinhae Bay (진해만의 3차원 수질 모델링)

  • 김차겸;이필용
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2000
  • A three-dimensional hydrodynamic-ecosystem model was developed and applied to Chinhae Bay which is located in the southeastern sea of Korea. The model includes a three-dimensional hydrodynamic model and an eutrophication model, and the model operates on the same grid system. The agreement between predicted and measured results is reasonably encouraging. The concentrations of the calculated COD, DIN and DIP are appeared to be very high due to the phytoplankton production and the wastewater input in the northern part of Chinhae Bay. Anoxic and hypoxic water masses in the bottom layer occur in the northern part of the bay due to the excess loading of wastewater and strong stratification, and in the western inner part of the bay due to high oxygen consumption in densely populated aquaculturing facilities. DO concentration contours show parallel to the bay entrance line, which means the importance of supplying DO by physical process from the mouth of the bay. Although both the hydrodynamic and biochemical processes play important role to form the hypoxic waters in the bottom of the inner bay, it is suggested that the hydrodynamic conditions such as the vertical and the horizontal eddy diffusivity are primarily important factors.

  • PDF

Effect of Aeration on Fertilization and Sludge Accumulation of Pig Slurry (돼지분뇨 슬러리 액비화시 폭기가 액비특성 및 슬러지 형성에 미치는 영향)

  • Jeong, Kwang-Hwa;Khan, Modabber Ahmed;Lee, Myung-Gyu;Kim, Jung-Gon;Han, Duk-Woo;Kwag, Jung-Hun
    • Journal of Animal Environmental Science
    • /
    • v.19 no.1
    • /
    • pp.47-54
    • /
    • 2013
  • Two types of reactors were set to investigate the change of characteristics of pig slurry by aeration during fertilization period. One system was equipped with air diffuser to supply oxygen to pig slurry for liquid fertilization, but there was no air diffuser in the other system. Air supply to the experimental systems was regulated by air flow meter. The reactors were set up in the laboratory to protect the pig slurry from external condition such as temperature and humidity changes. Maintaining optimal pH range in the experimental reactors is an important factor for liquid fertilization of pig slurry. In this study, pH ranges of aerobic reactor and anoxic reactor was 7.04~7.19 and 7.34~7.81, respectively. The temperature of aerobic reactors was $2{\sim}3^{\circ}C$ higher then indoor temperature. The amount of sludge accumulated at the bottom layer of non-aerated reactors was 4~5 times more than that of aerated reactors.

Stratigraphical and Sedimentological Studies on Core Sediments from the Southwestern Ulleung Basin, East Sea (울릉분지 남서부 해역의 천부퇴적물에 대한 층서$\cdot$퇴적학적 연구)

  • 박명호;류병재;김일수;정태진;이영주;유강민
    • Economic and Environmental Geology
    • /
    • v.35 no.2
    • /
    • pp.171-177
    • /
    • 2002
  • Two piston-core sediments, obtained from the southwestern margin of the Ulleung Basin in East Sea, are analyzed to investigate the stratigraphy and sedimentary environment of the Late Quaternary. The cores consist mainly of cuddy sediments with silty sands, lapilli tephra and ash layers. The chronostratigraphic correlation with known eruption ages reveals that the core sediments contain the stratigraphic document over the past 46.1 kyr and the sedimentation rates during the last glacial period were relatively higher (12.1-14.9 cm/kyr) than those in pelagic ocean. Several sedimentary facies, mainly affected by turbidity currents, are commonly present in the core interval accumulated during the oxygen-isotope stage 2. Many of horizontal voids, which are thought to have formed by gas expansion, are observed in fore 00GHP-07. The total organic carbon (TOC) contents of the core sediments are noticeably high (average 1 .8%). Particularly, these TOC valuers increased during Termination I, suggesting that dering this time interval the sedimentary environment of the study area was changed to more anoxic.

Characteristics of Carbon Source Biosorption (유기물 생흡착 현상에 관한 기초연구)

  • Lee, Dong-Hoon;Lee, Doo-Jin;Kim, Seung-Jin;Chung, Jonwook;Bae, Wookeun
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.23-29
    • /
    • 2006
  • Biosorption technology was used to remove hazardous materials from wastewater, herbicide, heavy metals, and radioactive compounds, based on binding capacities of various biological materials. Biosorption process can be explained by two steps; the first step is that target contaminants is in contact with microorganisms and the second is that the adsorbed target contaminants is infiltrated with inner cell through metabolically mediated or physico-chemical pathways of uptake. Until recently, no information is available to explain the definitive mechanism of biosorption. The purpose of this study is to evaluate biosorption capabilities of organic matters using activated sludge and to investigate affecting factors upon biosorption. Over 49% of organic matter could be removed by positive biosorption reaction under anoxic condition within 10 minutes. The biosorption capacities were constant at around 50 mg-COD/mg-MLSS for all batch experiments. As starvation time increased under aerobic or anaerobic conditions, biosorption capacity increased since higher stressed microorganisms by starvation was more brisk. Starvation stress of microorganisms was higher at aerobic condition than anaerobic one. As temperature increased or easily biodegradable carbon sources were used, biosorption capacities increased. Consequently, biosorption can be estimated by biological -adsorbed capability of the bacterial cell-wall and we can achieve the cost-effective and non -residual denitrification with applying biosorption to the bio-reduction of nitrate.

The Study for Enhancement of Nitrogen Removal Efficiency in M-Dephanox Process (M-Dephanox 공정 질소 제거 효율 향상 방안에 관한 연구)

  • Ryu, Hong-Duck;Lee, Sang-Ill
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.74-82
    • /
    • 2006
  • In this study, development of M2-Dephanox and M3-Dephanox process has been tried to enhance the nitrogen removal of M-Dephanox process on the basis of previous study about M-Dephanox. The results showed that T-N removal efficiency of M3-Dephanox process was 8.9% or 11.3% higher than M-Dephanox or M2-Dephanox processes, respectively. This result is due to the lower $NO_3{^-}-N$ concentration in the effluent of M3-Dephanox than of M-Dephanox and M2-Dephanox processes. This results were recurrenced by PASS simulator. As result of simulation by PASS program, effluent $NO_3{^-}-N$ concentration of M3-Dephanox process was 1.4 mg/L and 3.6 mg/L lower than M-Dephanox and M2-Dephanox processes. In the study about optimization of M3-Dephanox processes by PASS program, SRT greatly affected T-N removal of M3-Dephanox process, whereas, the recycle rate and recirculation rate did little affect T-N removal efficiency of M3-Dephanox. In the study about optimization of reactors following the nitrification reactor of M3-Dephanox process, it was shown that the best optimum volume ratio of denitrification reactor, intermittently aerated reactor and anoxic reactor for the T-N removal were 29.1(%) : 32.7(%) : 38.2(%). T-N removal efficiency at this volume ratio was similar to T-N removal efficiency at the volume ratio of 36.3(%) : 36.3(%) : 27.4(%) designed for the lab-scale M3-Dephanox.

Nitrification/Denitrification Rate and Classification of Output Nitrogen according to COD Loads in SBR (연속회분식 공정에서 COD부하에 따른 질산화/탈질율 및 유출질소 분휴)

  • Lee, Jaekune;Yim, Soobin
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.1
    • /
    • pp.30-35
    • /
    • 2008
  • In this study, we investigated the nitrification/denitrification rate and classification of output nitrogen of a sequencing batch reactor (SBR) system with the variation of COD loads ; COD loads of 0.3, 0.4, 0.6, 0.7, 0.8, 1.0 and $1.2kgCOD/m^3{\cdot}d$ were tested to determine the optimum conditions for the operation of the SBR and increase its nitrogen removal efficiency. As the COD loads increased, the nitrification rate at aerobic(I) period and the denitrification rate at anoxic(I) period were decreased. With the variation of COD loads, the amounts of nitrogen removed in the clarified water effluent were 63.9, 54.2, 34.7, 22.5, 13.7, 12.5 and 26.5 mg/cycle, respectively. The amounts of nitrogen removed during the sludge waste process were 19.5, 26.6, 41.0, 47.3, 58.1, 72.4 and 88.1 mg/cycle, respectively. The amounts of nitrogen removed by denitrification were 66.8, 69.3, 68.9, 56.5, 39.5, 7.3 and 0.0 mg/cycle, respectively, indicating that COD load more than $0.7kgCOD/m^3{\cdot}d$ decreases the amounts of denitrified nitrogen. The nitrogen mass balances were calculated as the percentages of nitrogen removed in the clarified water effluent or by denitrification and sludge waste processing in each cycle of SBR operation and were 99.0, 98.5, 95.4, 82.1, 73.0, 60.5 and 74.8% for COD loads of 0.3, 0.4, 0.6, 0.7, 0.8, 1.0 and $1.2kgCOD/m^3{\cdot}d$, respectively.

Performance Evaluation of a Bioreactor Partially Packed with Porous Media Containing a MA (Microorganism Activator) (미생물 활성물질이 내재된 담체를 이용한 생물반응조의 성능 평가)

  • Park, Jong-Hoon;Hong, Seok-Won;Choi, Yong-Su;Lee, Sang-Hyup;Kim, Seung-Jun;Kang, Seun-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.1
    • /
    • pp.47-55
    • /
    • 2007
  • The waste water treatment facility at rural and mountainous region in catchment areas of dams should be small scale. The wastewater treatment facility of small scale has some specification as follows;1)simple process, 2)low maintenance cost, and 3)high removal efficiency. So, we developed the bioreactor which can be satisfied with the specification of small scale waste water treatment facility. The bioreactor consisted of the anoxic and oxic zone. The two zones were effectively separated by cone type baffle. By the effective separation through CTB, the nitrification and denitrification reaction occurred effectively. Therefore, the removal efficiency of total nitorgen (TN) increased compared to other types of baffle. And, we put into the bio activated media in oxic zone to increase the concentration and activity of microbiology. The media contained the components which were made of many kinds of the minerals to increase the activity of microbiology. Additionally, we observed that the phosphate removal efficiency increased by bio activated media. This is resulted from the coagulation-sedimentation reaction by mineral in components. The average removal efficiencies of TN and TP during Run 2 were 69 and 89% which were 4 and 25% higher than those during Run 1 without the MA, respectively. For BOD, COD, SS and TKN, the average removal efficiencies at Run 2 were slightly higher than those at Run 1. Therefore, we could maintain the high concentration and high activity of microbiology through bioreactor developed in this study. And the removal efficiency of TN and TP increased.

Evaluation of the impact of sewage treatment plants in the Linked treatment through the sewage treatment computer simulation program (하수처리 전산모사 프로그램을 통한 연계처리시 하수처리장 영향 평가)

  • Kim, Sungji;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.22 no.4
    • /
    • pp.321-327
    • /
    • 2020
  • Recently The amount of wastewater and linked wastewater is being increased every year due to industrial development, population growth, and improvement in living standards. Linked wastewater shows the feature-low flow rate and high concentration. Therefore, it has been shown that it has a great impact on the operation of the sewage treatment plant and costs a lot for treating linked wastewater. In this study, a scenario with low increase of water quality when the total amount of the inflow of linked wastewater was entered into individual reactors is obtained. According to the result of modeling, The effluent water quality get the least increment once the water was introduced into the influent and anoxic tank. We generated the various scenarios Based on these results. scenarios are varying according to inflow from linked waste water's distribution ration. As a result of modeling through various scenarios, it was found that the increment of TN and TP were at the least when the inflow of linked water was distributed with ratio between sewage (80%) and oxygen-free tank (20%).