• 제목/요약/키워드: Anopheles fluviatilis

검색결과 3건 처리시간 0.018초

Molecular Variation and Distribution of Anopheles fluviatilis (Diptera: Culicidae) Complex in Iran

  • Naddaf, Saied Reza;Razavi, Mohammad Reza;Bahramali, Golnaz
    • Parasites, Hosts and Diseases
    • /
    • 제48권3호
    • /
    • pp.231-236
    • /
    • 2010
  • Anopheles fluviatilis James (Oiptera: Culicidae) is one of the known malaria vectors in south and southeastern Iran. Earlier ITS2 sequences analysis of specimens from Iran demonstrated only a single genotype that was identical to species Y in India, which is also the same as species T. We identified 2 haplotypes in the An. fluviatilis populations of Iran based on differences in nucleotide sequences of D3 domain of the 28S locus of ribosomal DNA (rDNA). Comparison of sequence data from 44 Iranian specimens with those publicly available in the Genbank database showed that all of the 288-D3 sequences from Kazeroun and Khesht regions in Fars Province were identical to the database entry representing species U in India. In other regions, all the individuals showed heterozygosity at the single nucleotide position, which identifies species U and T. It is argued that the 2 species may co-occur in some regions and hybridize; however, the heterozygosity in the 288-D3 locus was not reflected in ITS2 sequences and this locus for all individuals was identical to species T. This study shows that in a newly diverged species, like members of An. fluviatilis complex, a single molecular marker may not be sufficiently discriminatory to identify all the taxa over a vast geographical area. In addition, other molecular markers may provide more reliable information for species discrimination.

Identification of Iranian Vectors of Malaria by Analysis of Cuticular Hydrocarbons

  • Rasoolian, Mohammad;Nikbakhtzadeh, Mahmood Reza
    • Animal cells and systems
    • /
    • 제13권3호
    • /
    • pp.331-337
    • /
    • 2009
  • Twenty-eight Anopheles species has been so-far identified in Iran, while only 8 species was proved as malaria vector. In this study, we principally examined the cuticular hydrocarbon (CHC) potency in identification of Iranian vectors of malaria and then differentiation of vector and non-vector species of Anopheles. Seven species of malaria vectors and the non-vector species, Anopheles claviger were collected throughout Iran. Female extracts were made out of every five conspecific specimens by surface immersion in pure n-hexane. Each sample was injected into a FID-GC instrument along with the known concentrations of standards. CHC profiles of the eight Anopheles species indicated no qualitative difference. The average mass of each eluted CHC were compared using Repeated ANOVA and Mann-Whitney tests. Results confirmed a significant difference in mass of each single CHC at a specific retention time (RT). Statistical comparison of CHC mass in An. sacharovi, An. stephensi, An. culicifacies and An. fluviatilis at RT 39.6 indicated significant differences (P<0.05) among these species. Analysis of CHC mass of An. dthali, An. superpictus & An. sacharovi at RT 28.5, An. stephensi & An. sacharovi at RT 30.7 and An. sacharovi & An. claviger at RT 30.6 similarly indicated significant differences (P<0.05). An. sacharovi could be distinguished from other species, which showed only trace, by integratable peaks at retention times of 29.7, 31 and 32.6. Similarly, An. claviger could be distinguished from the other species with a trace peak at RT 30.6. In order to separate An. stephensi from the five other species, the integratable peak at RT 30.7 was used. An. dthali could be identified at RT 26.2 by an integratable peak v.s. the trace peaks of other species. An. superpictus had indicator peaks at RTs 27.4 & 28.5 v.s. trace peaks of other species. An. maculipennis with its trace peak at RT 39.6 could be easily differentiated from An. fluviatilis & An. culicifacies. This study proved that all of the examined species of Anopheles could be well identified based on their quantitative differences in CHCs, except for An. fluviatilis & An. culicifacies for which no CHC indicator peak was detected.

Identification of the Anopheles Mosquitoes(Diptera: Culicidae) of Southern Iran Using Analysis of Cuticular Hydrocarbons

  • Rasoolian, Mohammad;Sadrai, Javid;Nikbakhtzadeh, Mahmood Reza
    • Animal cells and systems
    • /
    • 제12권3호
    • /
    • pp.165-170
    • /
    • 2008
  • Cuticular hydrocarbons(CHCs) of the epicuticle wax layer are so far used to differentiate the insects in species and subspecies levels. In this study, four species of malaria vectors(genus Anopheles) were collected from various localities in southern Iran. Twenty specimens of each species were randomly selected and one epicuticular extract was prepared of every five specimens. FID-GC profiles of the extracts did not show any qualitative difference. Using significant difference of CHC mass at retention time(RT) 39.6, the two species of An. sacharovi and An. fluviatilis could be distinguished. Similarly, the two species of An. superpictus & An. sacharovi and An. dthali & An. sacharovi were differentiated by their CHC level at RT 28.5. An. sacharovi was distinguished by integratable peaks at RTs 29.7, 30.6, 30.7, 31 and 32.6 while the other three species just indicated trace peaks at the same RTs. Similarly, An. dthali could be known by an integratable peak at RT 26.2 while An. fluviatilis and An. superpictus indicated trace peaks at the same RT. Integratable peaks and traces at RTs 27.4 and 28.5 were respectively used to differentiate An. superpictus from An. fluviatilis. Lastly, CHC trace amount of An. superpictus at RT 39.6 is another indicator to distinguish it from An. fluviatilis with an integratable peak at the same RT. In harmony with other studies worldwide we hereby report that quantitative analysis of CHCs was successfully applied to differentiate the four Anopheles species of southern Iran.