• Title/Summary/Keyword: Anonymous Facial Model

Search Result 2, Processing Time 0.017 seconds

Anonymity of Medical Brain Images (의료 두뇌영상의 익명성)

  • Lee, Hyo-Jong;Du, Ruoyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.1
    • /
    • pp.81-87
    • /
    • 2012
  • The current defacing method for keeping an anonymity of brain images damages the integrity of a precise brain analysis due to over removal, although it maintains the patients' privacy. A novel method has been developed to create an anonymous face model while keeping the voxel values of an image exactly the same as that of the original one. The method contains two steps: construction of a mockup brain template from ten normalized brain images and a substitution of the mockup brain to the brain image. A level set segmentation algorithm is applied to segment a scalp-skull apart from the whole brain volume. The segmented mockup brain is coregistered and normalized to the subject brain image to create an anonymous face model. The validity of this modification is tested through comparing the intensity of voxels inside a brain area from the mockup brain with the original brain image. The result shows that the intensity of voxels inside from the mockup brain is same as ones from an original brain image, while its anonymity is guaranteed.

Lossless Deformation of Brain Images for Concealing Identification (신원 은닉을 위한 두뇌 영상의 무손실 변경)

  • Lee, Hyo-Jong;Yu, Du Ruo
    • The KIPS Transactions:PartB
    • /
    • v.18B no.6
    • /
    • pp.385-388
    • /
    • 2011
  • Patients' privacy protection is a heated issue in medical business, as medical information in digital format transmit everywhere through networks without any limitation. A current protection method for brain images is to deface from the brain image for patient's privacy. However, the defacing process often removes important brain voxels so that the defaced brain image is damaged for medical analysis. An ad-hoc method is proposed to conceal patient's identification by adding cylindrical mask, while the brain keep all important brain voxels. The proposed lossless deformation of brain image is verified not to loose any important voxels. Futhermore, the masked brain image is proved not to be recognized by others.