• Title/Summary/Keyword: Anomaly Pattern Detection

Search Result 75, Processing Time 0.022 seconds

Emerging Topic Detection Using Text Embedding and Anomaly Pattern Detection in Text Streaming Data (텍스트 스트리밍 데이터에서 텍스트 임베딩과 이상 패턴 탐지를 이용한 신규 주제 발생 탐지)

  • Choi, Semok;Park, Cheong Hee
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.9
    • /
    • pp.1181-1190
    • /
    • 2020
  • Detection of an anomaly pattern deviating normal data distribution in streaming data is an important technique in many application areas. In this paper, a method for detection of an newly emerging pattern in text streaming data which is an ordered sequence of texts is proposed based on text embedding and anomaly pattern detection. Using text embedding methods such as BOW(Bag Of Words), Word2Vec, and BERT, the detection performance of the proposed method is compared. Experimental results show that anomaly pattern detection using BERT embedding gave an average F1 value of 0.85 and the F1 value of 1 in three cases among five test cases.

An Anomaly Detection Algorithm for Cathode Voltage of Aluminum Electrolytic Cell

  • Cao, Danyang;Ma, Yanhong;Duan, Lina
    • Journal of Information Processing Systems
    • /
    • v.15 no.6
    • /
    • pp.1392-1405
    • /
    • 2019
  • The cathode voltage of aluminum electrolytic cell is relatively stable under normal conditions and fluctuates greatly when it has an anomaly. In order to detect the abnormal range of cathode voltage, an anomaly detection algorithm based on sliding window was proposed. The algorithm combines the time series segmentation linear representation method and the k-nearest neighbor local anomaly detection algorithm, which is more efficient than the direct detection of the original sequence. The algorithm first segments the cathode voltage time series, then calculates the length, the slope, and the mean of each line segment pattern, and maps them into a set of spatial objects. And then the local anomaly detection algorithm is used to detect abnormal patterns according to the local anomaly factor and the pattern length. The experimental results showed that the algorithm can effectively detect the abnormal range of cathode voltage.

Anomaly Detection via Pattern Dictionary Method and Atypicality in Application (패턴사전과 비정형성을 통한 이상치 탐지방법 적용)

  • Sehong Oh;Jongsung Park;Youngsam Yoon
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.481-486
    • /
    • 2023
  • Anomaly detection holds paramount significance across diverse fields, encompassing fraud detection, risk mitigation, and sensor evaluation tests. Its pertinence extends notably to the military, particularly within the Warrior Platform, a comprehensive combat equipment system with wearable sensors. Hence, we propose a data-compression-based anomaly detection approach tailored to unlabeled time series and sequence data. This method entailed the construction of two distinctive features, typicality and atypicality, to discern anomalies effectively. The typicality of a test sequence was determined by evaluating the compression efficacy achieved through the pattern dictionary. This dictionary was established based on the frequency of all patterns identified in a training sequence generated for each sensor within Warrior Platform. The resulting typicality served as an anomaly score, facilitating the identification of anomalous data using a predetermined threshold. To improve the performance of the pattern dictionary method, we leveraged atypicality to discern sequences that could undergo compression independently without relying on the pattern dictionary. Consequently, our refined approach integrated both typicality and atypicality, augmenting the effectiveness of the pattern dictionary method. Our proposed method exhibited heightened capability in detecting a spectrum of unpredictable anomalies, fortifying the stability of wearable sensors prevalent in military equipment, including the Army TIGER 4.0 system.

Detection of multi-type data anomaly for structural health monitoring using pattern recognition neural network

  • Gao, Ke;Chen, Zhi-Dan;Weng, Shun;Zhu, Hong-Ping;Wu, Li-Ying
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.129-140
    • /
    • 2022
  • The effectiveness of system identification, damage detection, condition assessment and other structural analyses relies heavily on the accuracy and reliability of the measured data in structural health monitoring (SHM) systems. However, data anomalies often occur in SHM systems, leading to inaccurate and untrustworthy analysis results. Therefore, anomalies in the raw data should be detected and cleansed before further analysis. Previous studies on data anomaly detection mainly focused on just single type of data anomaly for denoising or removing outliers, meanwhile, the existing methods of detecting multiple data anomalies are usually time consuming. For these reasons, recognising multiple anomaly patterns for real-time alarm and analysis in field monitoring remains a challenge. Aiming to achieve an efficient and accurate detection for multi-type data anomalies for field SHM, this study proposes a pattern-recognition-based data anomaly detection method that mainly consists of three steps: the feature extraction from the long time-series data samples, the training of a pattern recognition neural network (PRNN) using the features and finally the detection of data anomalies. The feature extraction step remarkably reduces the time cost of the network training, making the detection process very fast. The performance of the proposed method is verified on the basis of the SHM data of two practical long-span bridges. Results indicate that the proposed method recognises multiple data anomalies with very high accuracy and low calculation cost, demonstrating its applicability in field monitoring.

A Criterion on Profiling for Anomaly Detection (이상행위 탐지를 위한 프로파일링 기준)

  • 조혁현;정희택;김민수;노봉남
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.3
    • /
    • pp.544-551
    • /
    • 2003
  • Internet as being generalized, intrusion detection system is needed to protect computer system from intrusions synthetically. We propose a criterion on profiling for intrusion detection system using anomaly detection. We present the cause of false positive on profiling and propose anomaly method to control this. Finally, we propose similarity function to decide whether anomaly action or not for user pattern using pattern database.

Design and Evaluation of a Rough Set Based Anomaly Detection Scheme Considering the Age of User Profiles

  • Bae, Ihn-Han
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.12
    • /
    • pp.1726-1732
    • /
    • 2007
  • The rapid proliferation of wireless networks and mobile computing applications has changed the landscape of network security. Anomaly detection is a pattern recognition task whose goal is to report the occurrence of abnormal or unknown behavior in a given system being monitored. This paper presents an efficient rough set based anomaly detection method that can effectively identify a group of especially harmful internal attackers - masqueraders in cellular mobile networks. Our scheme uses the trace data of wireless application layer by a user as feature value. Based on this, the used pattern of a mobile's user can be captured by rough sets, and the abnormal behavior of the mobile can be also detected effectively by applying a roughness membership function with the age of the user profile. The performance of the proposed scheme is evaluated by using a simulation. Simulation results demonstrate that the anomalies are well detected by the proposed scheme that considers the age of user profiles.

  • PDF

Design and Evaluation of a Dynamic Anomaly Detection Scheme Considering the Age of User Profiles

  • Lee, Hwa-Ju;Bae, Ihn-Han
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.2
    • /
    • pp.315-326
    • /
    • 2007
  • The rapid proliferation of wireless networks and mobile computing applications has changed the landscape of network security. Anomaly detection is a pattern recognition task whose goal is to report the occurrence of abnormal or unknown behavior in a given system being monitored. This paper presents a dynamic anomaly detection scheme that can effectively identify a group of especially harmful internal masqueraders in cellular mobile networks. Our scheme uses the trace data of wireless application layer by a user as feature value. Based on the feature values, the use pattern of a mobile's user can be captured by rough sets, and the abnormal behavior of the mobile can be also detected effectively by applying a roughness membership function with both the age of the user profile and weighted feature values. The performance of our scheme is evaluated by a simulation. Simulation results demonstrate that the anomalies are well detected by the proposed dynamic scheme that considers the age of user profiles.

  • PDF

Anomaly Detection Scheme Using Data Mining Methods (데이터마이닝 기법을 이용한 비정상행위 탐지 방법 연구)

  • 박광진;유황빈
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.2
    • /
    • pp.99-106
    • /
    • 2003
  • Intrusions pose a serious security risk in a network environment. For detecting the intrusion effectively, many researches have developed data mining framework for constructing intrusion detection modules. Traditional anomaly detection techniques focus on detecting anomalies in new data after training on normal data. To detect anomalous behavior, Precise normal Pattern is necessary. This training data is typically expensive to produce. For this, the understanding of the characteristics of data on network is inevitable. In this paper, we propose to use clustering and association rules as the basis for guiding anomaly detection. For applying entropy to filter noisy data, we present a technique for detecting anomalies without training on normal data. We present dynamic transaction for generating more effectively detection patterns.

A Pre-processing Process Using TadGAN-based Time-series Anomaly Detection (TadGAN 기반 시계열 이상 탐지를 활용한 전처리 프로세스 연구)

  • Lee, Seung Hoon;Kim, Yong Soo
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.3
    • /
    • pp.459-471
    • /
    • 2022
  • Purpose: The purpose of this study was to increase prediction accuracy for an anomaly interval identified using an artificial intelligence-based time series anomaly detection technique by establishing a pre-processing process. Methods: Significant variables were extracted by applying feature selection techniques, and anomalies were derived using the TadGAN time series anomaly detection algorithm. After applying machine learning and deep learning methodologies using normal section data (excluding anomaly sections), the explanatory power of the anomaly sections was demonstrated through performance comparison. Results: The results of the machine learning methodology, the performance was the best when SHAP and TadGAN were applied, and the results in the deep learning, the performance was excellent when Chi-square Test and TadGAN were applied. Comparing each performance with the papers applied with a Conventional methodology using the same data, it can be seen that the performance of the MLR was significantly improved to 15%, Random Forest to 24%, XGBoost to 30%, Lasso Regression to 73%, LSTM to 17% and GRU to 19%. Conclusion: Based on the proposed process, when detecting unsupervised learning anomalies of data that are not actually labeled in various fields such as cyber security, financial sector, behavior pattern field, SNS. It is expected to prove the accuracy and explanation of the anomaly detection section and improve the performance of the model.

Anomaly Detection Model based on Network using the Session Patterns (세션 패턴을 이용한 네트워크기반의 비정상 탐지 모델)

  • Park Soo-Jin;Choi Yong-Rak
    • The KIPS Transactions:PartC
    • /
    • v.11C no.6 s.95
    • /
    • pp.719-724
    • /
    • 2004
  • Recently, since the number of internet users is increasing rapidly and, by using the public hacking tools, general network users can intrude computer systems easily, the hacking problem is getting more serious. In order to prevent the intrusion, it is needed to detect the sign in advance of intrusion in a positive prevention by detecting the various foms of hackers' intrusion trials to know the vulnerability of systems. The existing network-based anomaly detection algorithms that cope with port- scanning and the network vulnerability scans have some weakness in intrusion detection. they can not detect slow scans and coordinated scans. therefore, the new concept of algorithm is needed to detect effectively the various forms of abnormal accesses for intrusion regardless of the intrusion methods. In this paper, SPAD(Session Pattern Anomaly Detector) is presented, which detects the abnormal service patterns by comparing them with the ordinary normal service patterns.