• Title/Summary/Keyword: Anomaly Intrusion Detection

Search Result 141, Processing Time 0.025 seconds

Anomaly Intrusion Detection based on Clustering in Network Environment (클러스터링 기법을 활용한 네트워크 비정상행위 탐지)

  • 오상현;이원석
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 2003.12a
    • /
    • pp.179-184
    • /
    • 2003
  • 컴퓨터를 통한 침입을 탐지하기 위해서 많은 연구들이 오용탐지 기법을 개발하였다. 최근에는 오용 탐지 기법을 개선하기 위해서 비정상행위 탐지 기법에 관련된 연구들이 진행중이다. 본 논문에서는 클러스터링 기법을 응용한 새로운 네트워크 비정상행위 탐지 기법을 제안한다. 이를 위해서 정상 행위를 다양한 각도에서 분석될 수 있도록 네트워크 로그로부터 여러 특징들을 추출하고 각 특징에 대해서 클러스터링 알고리즘을 이용하여 정상행위 패턴을 생성한다. 제안된 방법에서는 정상행위 패턴 즉 클러스터를 축약된 프로파일로 생성하는 방법을 제시하며 제안된 방법의 성능을 평가하기 위해서 DARPA에서 수집된 네트워크 로그를 이용하였다.

  • PDF

Analysis of Improved Convergence and Energy Efficiency on Detecting Node Selection Problem by Using Parallel Genetic Algorithm (병렬유전자알고리즘을 이용한 탐지노드 선정문제의 에너지 효율성과 수렴성 향상에 관한 해석)

  • Seong, Ki-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.5
    • /
    • pp.953-959
    • /
    • 2012
  • There are a number of idle nodes in sensor networks, these can act as detector nodes for anomaly detection in the network. For detecting node selection problem modeled as optimization equation, the conventional method using centralized genetic algorithm was evaluated. In this paper, a method to improve the convergence of the optimal value, while improving energy efficiency as a method of considering the characteristics of the network topology using parallel genetic algorithm is proposed. Through simulation, the proposed method compared with the conventional approaches to the convergence of the optimal value was improved and was found to be energy efficient.

Intrusion Detection Methodology for SCADA system environment based on traffic self-similarity property (트래픽 자기 유사성(Self-similarity)에 기반한 SCADA 시스템 환경에서의 침입탐지방법론)

  • Koh, Pauline;Choi, Hwa-Jae;Kim, Se-Ryoung;Kwon, Hyuk-Min;Kim, Huy-Kang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.2
    • /
    • pp.267-281
    • /
    • 2012
  • SCADA system is a computer system that monitors and controls the national infrastructure or industrial process including transportation facilities, water treatment and distribution, electrical power transmission and distribution, and gas pipelines. The SCADA system has been operated in a closed network, but it changes to open network as information and communication technology is developed rapidly. As the way of connecting with outside user extends, the possibility of exploitation of vulnerability of SCADA system gets high. The methodology to protect the possible huge damage caused by malicious user should be developed. In this paper, we proposed anomaly detection based intrusion detection methodology by estimating self-similarity of SCADA system.

Intrusion Detection based on Intrusion Prediction DB using System Call Sequences (시스템 호출을 이용한 침입예상 데이터베이스 기반 침입탐지)

  • Ko, Ki-Woong;Shin, Wook;Lee, Dong-Ik
    • Annual Conference of KIPS
    • /
    • 2002.04b
    • /
    • pp.927-930
    • /
    • 2002
  • 본 논문에서는 중요 프로세스(privileged process)의 시스템 호출 순서(system call sequence)를 이용한 침입탐지 시스템을 제안한다. 기존 연구의 정상행위 기반 침입탐지 시스템은 정상행위를 모델링하여 시스템을 구성하고, 이와 비교를 통해 프로세스의 이상(anomaly) 여부를 결정한다. 이러한 방법은 모델링되지 않은 미지의 행위에 대한 적절한 판단을 행할 수 없으므로, 높은 오류율(false-positive/negative)을 보인다. 본 논문에서는 현재까지 알려진 공격에서 공통적으로 나타나는 윈도우들을 수집하여 침입예상윈도우를 구축하고, 이를 기존의 침입탐지 시스템에 부가적으로 사용하여 효과적으로 오류율(false-positive/negative)을 낮출 수 있음을 보인다. 실험 결과 제안된 방법을 통한 침입탐지는 기존의 방법에 비해 공격 탐지율은 증가하고 정상행위에 대한 오류율은 감소하였다.

  • PDF

An Anomaly Intrusion Detection System Using Grouping of Network Packets (네트워크 패킷의 그룹화를 이용한 Anomaly 침입탐지 시스템)

  • Yoo, Sang-Hyun;Weon, Ill-Young;Song, Doo-Heon;Lee, Chan-Hoon
    • Annual Conference of KIPS
    • /
    • 2005.05a
    • /
    • pp.1119-1122
    • /
    • 2005
  • 기계학습 방법을 이용한 네트워크 기반 침입탐지 시스템은 어떤 학습알고리즘을 사용하여 구현되었느냐에 따라 그 결과가 매우 달라진다. 학습을 위한 전처리를 많이 하면 비례하여 성능이 개선되지만, 실제 사용의 유용성면에서는 성능이 떨어지게 된다. 따라서 최소한의 전처리를 하여 침입탐지의 탐지율을 보장하는 방법이 필요 하다. 본 논문에서는 네트워크기반 침입탐지 문제를 기계학습을 이용하여 해결하는 방법을 제안 하였다. 제안된 모델은 탐지 속도와 각종 공격들의 패킷 분포를 고려하여 관련된 그룹으로 분류하고, 이것을 학습하는 시스템이다. 실험을 통하여 제안된 모델의 유용성을 검증 하였다.

  • PDF

Network Anomaly Detection using Hybrid Feature Selection

  • Kim Eun-Hye;Kim Se-Hun
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 2006.06a
    • /
    • pp.649-653
    • /
    • 2006
  • In this paper, we propose a hybrid feature extraction method in which Principal Components Analysis is combined with optimized k-Means clustering technique. Our approach hierarchically reduces the redundancy of features with high explanation in principal components analysis for choosing a good subset of features critical to improve the performance of classifiers. Based on this result, we evaluate the performance of intrusion detection by using Support Vector Machine and a nonparametric approach based on k-Nearest Neighbor over data sets with reduced features. The Experiment results with KDD Cup 1999 dataset show several advantages in terms of computational complexity and our method achieves significant detection rate which shows possibility of detecting successfully attacks.

  • PDF

Anomaly Detection Method Based on Trajectory Classification in Surveillance Systems (감시 시스템에서 궤적 분류를 이용한 이상 탐지 방법)

  • Jeonghun Seo;Jiin Hwang;Pal Abhishek;Haeun Lee;Daesik Ko;Seokil Song
    • Journal of Platform Technology
    • /
    • v.12 no.3
    • /
    • pp.62-70
    • /
    • 2024
  • Recent surveillance systems employ multiple sensors, such as cameras and radars, to enhance the accuracy of intrusion detection. However, object recognition through camera (RGB, Thermal) sensors may not always be accurate during nighttime, in adverse weather conditions, or when the intruder is camouflaged. In such situations, it is possible to detect intruders by utilizing the trajectories of objects extracted from camera or radar sensors. This paper proposes a method to detect intruders using only trajectory information in environments where object recognition is challenging. The proposed method involves training an LSTM-Attention based trajectory classification model using normal and abnormal (intrusion, loitering) trajectory data of animals and humans. This model is then used to identify abnormal human trajectories and perform intrusion detection. Finally, the validity of the proposed method is demonstrated through experiments using real data.

  • PDF

Network Anomaly Detection Technologies Using Unsupervised Learning AutoEncoders (비지도학습 오토 엔코더를 활용한 네트워크 이상 검출 기술)

  • Kang, Koohong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.4
    • /
    • pp.617-629
    • /
    • 2020
  • In order to overcome the limitations of the rule-based intrusion detection system due to changes in Internet computing environments, the emergence of new services, and creativity of attackers, network anomaly detection (NAD) using machine learning and deep learning technologies has received much attention. Most of these existing machine learning and deep learning technologies for NAD use supervised learning methods to learn a set of training data set labeled 'normal' and 'attack'. This paper presents the feasibility of the unsupervised learning AutoEncoder(AE) to NAD from data sets collecting of secured network traffic without labeled responses. To verify the performance of the proposed AE mode, we present the experimental results in terms of accuracy, precision, recall, f1-score, and ROC AUC value on the NSL-KDD training and test data sets. In particular, we model a reference AE through the deep analysis of diverse AEs varying hyper-parameters such as the number of layers as well as considering the regularization and denoising effects. The reference model shows the f1-scores 90.4% and 89% of binary classification on the KDDTest+ and KDDTest-21 test data sets based on the threshold of the 82-th percentile of the AE reconstruction error of the training data set.

Network Forensics and Intrusion Detection in MQTT-Based Smart Homes

  • Lama AlNabulsi;Sireen AlGhamdi;Ghala AlMuhawis;Ghada AlSaif;Fouz AlKhaldi;Maryam AlDossary;Hussian AlAttas;Abdullah AlMuhaideb
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.95-102
    • /
    • 2023
  • The emergence of Internet of Things (IoT) into our daily lives has grown rapidly. It's been integrated to our homes, cars, and cities, increasing the intelligence of devices involved in communications. Enormous amount of data is exchanged over smart devices through the internet, which raises security concerns in regards of privacy evasion. This paper is focused on the forensics and intrusion detection on one of the most common protocols in IoT environments, especially smart home environments, which is the Message Queuing Telemetry Transport (MQTT) protocol. The paper covers general IoT infrastructure, MQTT protocol and attacks conducted on it, and multiple network forensics frameworks in smart homes. Furthermore, a machine learning model is developed and tested to detect several types of attacks in an IoT network. A forensics tool (MQTTracker) is proposed to contribute to the investigation of MQTT protocol in order to provide a safer technological future in the warmth of people's homes. The MQTT-IOT-IDS2020 dataset is used to train the machine learning model. In addition, different attack detection algorithms are compared to ensure the suitable algorithm is chosen to perform accurate classification of attacks within MQTT traffic.

Design of Multi-Level Abnormal Detection System Suitable for Time-Series Data (시계열 데이터에 적합한 다단계 비정상 탐지 시스템 설계)

  • Chae, Moon-Chang;Lim, Hyeok;Kang, Namhi
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.6
    • /
    • pp.1-7
    • /
    • 2016
  • As new information and communication technologies evolve, security threats are also becoming increasingly intelligent and advanced. In this paper, we analyze the time series data continuously entered through a series of periods from the network device or lightweight IoT (Internet of Things) devices by using the statistical technique and propose a system to detect abnormal behaviors of the device or abnormality based on the analysis results. The proposed system performs the first level abnormal detection by using previously entered data set, thereafter performs the second level anomaly detection according to the trust bound configured by using stored time series data based on time attribute or group attribute. Multi-level analysis is able to improve reliability and to reduce false positives as well through a variety of decision data set.