• Title/Summary/Keyword: Anomaly Data

Search Result 790, Processing Time 0.029 seconds

Tropospheric Anomaly Detection in Multi-reference Stations Environment during Localized Atmosphere Conditions-(1) : Basic Concept of Anomaly Detection Algorithm

  • Yoo, Yun-Ja
    • Journal of Navigation and Port Research
    • /
    • v.40 no.5
    • /
    • pp.265-270
    • /
    • 2016
  • Extreme tropospheric anomalies such as typhoons or regional torrential rain can degrade positioning accuracy of the GPS signal. It becomes one of the main error terms affecting high-precision positioning solutions in network RTK. This paper proposed a detection algorithm to be used during atmospheric anomalies in order to detect the tropospheric irregularities that can degrade the quality of correction data due to network errors caused by inhomogeneous atmospheric conditions between multi-reference stations. It uses an atmospheric grid that consists of four meteorological stations and estimates the troposphere zenith total delay difference at a low performance point in an atmospheric grid. AWS (automatic weather station) meteorological data can be applied to the proposed tropospheric anomaly detection algorithm when there are different atmospheric conditions between the stations. The concept of probability density distribution of the delta troposphere slant delay was proposed for the threshold determination.

Research Trends on Deep Learning for Anomaly Detection of Aviation Safety (딥러닝 기반 항공안전 이상치 탐지 기술 동향)

  • Park, N.S.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.5
    • /
    • pp.82-91
    • /
    • 2021
  • This study reviews application of data-driven anomaly detection techniques to the aviation domain. Recent advances in deep learning have inspired significant anomaly detection research, and numerous methods have been proposed. However, some of these advances have not yet been explored in aviation systems. After briefly introducing aviation safety issues, data-driven anomaly detection models are introduced. Along with traditional statistical and well-established machine learning models, the state-of-the-art deep learning models for anomaly detection are reviewed. In particular, the pros and cons of hybrid techniques that incorporate an existing model and a deep model are reviewed. The characteristics and applications of deep learning models are described, and the possibility of applying deep learning methods in the aviation field is discussed.

LOCAL ANOMALIES AROUND THE THIRD PEAK IN THE CMB ANGULAR POWER SPECTRUM OF WMAP 7-YEAR DATA

  • Ko, Kyeong Yeon;Park, Chan-Gyung;Hwang, Jai-Chan
    • Journal of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.75-91
    • /
    • 2013
  • We estimate the power spectra of the cosmic microwave background radiation (CMB) temperature anisotropy in localized regions of the sky using the Wilkinson Microwave Anisotropy Probe (WMAP) 7-year data. We find that the north and south hat regions at high Galactic latitude ($|b|{\geq}30^{\circ}C$) show an anomaly in the power spectrum amplitude around the third peak, which is statistically significant up to 3. We try to explain the cause of the observed anomaly by analyzing the low Galactic latitude ($|b|$ < $30^{\circ}C$) regions where the galaxy contamination is expected to be stronger, and the regions weakly or strongly dominated byWMAP instrument noise. We also consider the possible effect of unresolved radio point sources. We find another but less statistically significant anomaly in the low Galactic latitude north and south regions whose behavior is opposite to the one at high latitude. Our analysis shows that the observed north-south anomaly at high latitude becomes weaker on regions with high number of observations (weak instrument noise), suggesting that the anomaly is significant at sky regions that are dominated by the WMAP instrument noise. We have checked that the observed north-south anomaly has weak dependences on the bin-width used in the power spectrum estimation, and on the Galactic latitude cut. We also discuss the possibility that the detected anomaly may hinge on the particular choice of the multipole bin around the third peak. We anticipate that the issue of whether or not the anomaly is intrinsic one or due to WMAP instrument noise will be resolved by the forthcoming Planck data.

SHM data anomaly classification using machine learning strategies: A comparative study

  • Chou, Jau-Yu;Fu, Yuguang;Huang, Shieh-Kung;Chang, Chia-Ming
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.77-91
    • /
    • 2022
  • Various monitoring systems have been implemented in civil infrastructure to ensure structural safety and integrity. In long-term monitoring, these systems generate a large amount of data, where anomalies are not unusual and can pose unique challenges for structural health monitoring applications, such as system identification and damage detection. Therefore, developing efficient techniques is quite essential to recognize the anomalies in monitoring data. In this study, several machine learning techniques are explored and implemented to detect and classify various types of data anomalies. A field dataset, which consists of one month long acceleration data obtained from a long-span cable-stayed bridge in China, is employed to examine the machine learning techniques for automated data anomaly detection. These techniques include the statistic-based pattern recognition network, spectrogram-based convolutional neural network, image-based time history convolutional neural network, image-based time-frequency hybrid convolution neural network (GoogLeNet), and proposed ensemble neural network model. The ensemble model deliberately combines different machine learning models to enhance anomaly classification performance. The results show that all these techniques can successfully detect and classify six types of data anomalies (i.e., missing, minor, outlier, square, trend, drift). Moreover, both image-based time history convolutional neural network and GoogLeNet are further investigated for the capability of autonomous online anomaly classification and found to effectively classify anomalies with decent performance. As seen in comparison with accuracy, the proposed ensemble neural network model outperforms the other three machine learning techniques. This study also evaluates the proposed ensemble neural network model to a blind test dataset. As found in the results, this ensemble model is effective for data anomaly detection and applicable for the signal characteristics changing over time.

Anomaly Detection Analysis using Repository based on Inverted Index (역방향 인덱스 기반의 저장소를 이용한 이상 탐지 분석)

  • Park, Jumi;Cho, Weduke;Kim, Kangseok
    • Journal of KIISE
    • /
    • v.45 no.3
    • /
    • pp.294-302
    • /
    • 2018
  • With the emergence of the new service industry due to the development of information and communication technology, cyber space risks such as personal information infringement and industrial confidentiality leakage have diversified, and the security problem has emerged as a critical issue. In this paper, we propose a behavior-based anomaly detection method that is suitable for real-time and large-volume data analysis technology. We show that the proposed detection method is superior to existing signature security countermeasures that are based on large-capacity user log data according to in-company personal information abuse and internal information leakage. As the proposed behavior-based anomaly detection method requires a technique for processing large amounts of data, a real-time search engine is used, called Elasticsearch, which is based on an inverted index. In addition, statistical based frequency analysis and preprocessing were performed for data analysis, and the DBSCAN algorithm, which is a density based clustering method, was applied to classify abnormal data with an example for easy analysis through visualization. Unlike the existing anomaly detection system, the proposed behavior-based anomaly detection technique is promising as it enables anomaly detection analysis without the need to set the threshold value separately, and was proposed from a statistical perspective.

A Novel Network Anomaly Detection Method based on Data Balancing and Recursive Feature Addition

  • Liu, Xinqian;Ren, Jiadong;He, Haitao;Wang, Qian;Sun, Shengting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.3093-3115
    • /
    • 2020
  • Network anomaly detection system plays an essential role in detecting network anomaly and ensuring network security. Anomaly detection system based machine learning has become an increasingly popular solution. However, due to the unbalance and high-dimension characteristics of network traffic, the existing methods unable to achieve the excellent performance of high accuracy and low false alarm rate. To address this problem, a new network anomaly detection method based on data balancing and recursive feature addition is proposed. Firstly, data balancing algorithm based on improved KNN outlier detection is designed to select part respective data on each category. Combination optimization about parameters of improved KNN outlier detection is implemented by genetic algorithm. Next, recursive feature addition algorithm based on correlation analysis is proposed to select effective features, in which a cross contingency test is utilized to analyze correlation and obtain a features subset with a strong correlation. Then, random forests model is as the classification model to detection anomaly. Finally, the proposed algorithm is evaluated on benchmark datasets KDD Cup 1999 and UNSW_NB15. The result illustrates the proposed strategies enhance accuracy and recall, and decrease the false alarm rate. Compared with other algorithms, this algorithm still achieves significant effects, especially recall in the small category.

Image Anomaly Detection Using MLP-Mixer (MLP-Mixer를 이용한 이미지 이상탐지)

  • Hwang, Ju-hyo;Jin, Kyo-hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.104-107
    • /
    • 2022
  • autoencoder deep learning model has excellent ability to restore abnormal data to normal data, so it is not appropriate for anomaly detection. In addition, the Inpainting method, which is a method of restoring hidden data after masking (masking) a part of the data, has a problem in that the restoring ability is poor for noisy images. In this paper, we use a method of modifying and improving the MLP-Mixer model to mask the image at a certain ratio and to reconstruct the image by delivering compressed information of the masked image to the model. After constructing a model learned with normal data from the MVTec AD dataset, a reconstruction error was obtained by inputting normal and abnormal images, respectively, and anomaly detection was performed through this. As a result of the performance evaluation, it was found that the proposed method has superior anomaly detection performance compared to the existing method.

  • PDF

Anomaly Removal for Efficient Conformance Test (효율적인 프로토콜 적합성 시험을 위한 변칙성 제거)

  • Lee, Hyeon-Cheol;Heo, Gi-Taek
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.3
    • /
    • pp.750-757
    • /
    • 1999
  • The protocol conformance testing is to check whether an implementation of a protocol conforms to its specification. And it is important to improve the interoperability of protocol and the efficiency of cost. In general, protocol is composed of the control flow representing observable behaviors and the data flow representing internally used variables. Until now, research for generation of test suite has been realized only consideration the control flow of protocol or separation control flow from data flow. Case of considering control flow, contents of test was simple and definite. Length of test was short. But it was of little application, and it didn't manage each kind errors in data flow. Therefore, we must generate test case that can manage control and data flow. So, anomaly of variable must be removed for efficient conformance testing. Therefore in this dissertation, we proposed algorithm which can remove anomaly of variable for efficient conformance testing. And it showed that anomaly of variable was got rid of applying this algorithm to real protocol.

  • PDF

Convolutional neural network-based data anomaly detection considering class imbalance with limited data

  • Du, Yao;Li, Ling-fang;Hou, Rong-rong;Wang, Xiao-you;Tian, Wei;Xia, Yong
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.63-75
    • /
    • 2022
  • The raw data collected by structural health monitoring (SHM) systems may suffer multiple patterns of anomalies, which pose a significant barrier for an automatic and accurate structural condition assessment. Therefore, the detection and classification of these anomalies is an essential pre-processing step for SHM systems. However, the heterogeneous data patterns, scarce anomalous samples and severe class imbalance make data anomaly detection difficult. In this regard, this study proposes a convolutional neural network-based data anomaly detection method. The time and frequency domains data are transferred as images and used as the input of the neural network for training. ResNet18 is adopted as the feature extractor to avoid training with massive labelled data. In addition, the focal loss function is adopted to soften the class imbalance-induced classification bias. The effectiveness of the proposed method is validated using acceleration data collected in a long-span cable-stayed bridge. The proposed approach detects and classifies data anomalies with high accuracy.

Anomaly Detection Scheme Using Data Mining Methods (데이터마이닝 기법을 이용한 비정상행위 탐지 방법 연구)

  • 박광진;유황빈
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.2
    • /
    • pp.99-106
    • /
    • 2003
  • Intrusions pose a serious security risk in a network environment. For detecting the intrusion effectively, many researches have developed data mining framework for constructing intrusion detection modules. Traditional anomaly detection techniques focus on detecting anomalies in new data after training on normal data. To detect anomalous behavior, Precise normal Pattern is necessary. This training data is typically expensive to produce. For this, the understanding of the characteristics of data on network is inevitable. In this paper, we propose to use clustering and association rules as the basis for guiding anomaly detection. For applying entropy to filter noisy data, we present a technique for detecting anomalies without training on normal data. We present dynamic transaction for generating more effectively detection patterns.