• Title/Summary/Keyword: Anomalous diffusion

Search Result 22, Processing Time 0.018 seconds

Electromagnetic Traveltime Tomography with Wavefield Transformation (파동장 변환을 이용한 전자탐사 주시 토모그래피)

  • Lee, Tae-Jong;Suh, Jung-Hee;Shin, Chang-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.1
    • /
    • pp.17-25
    • /
    • 1999
  • A traveltime tomography has been carried out by transforming electromagnetic data in frequency domain to wave-like domain. The transform uniquely relates a field satisfying a diffusion equation to an integral of the corresponding wavefield. But direct transform of frequency domain magnetic fields to wave-field domain is ill-posed problem because the kernel of the integral transform is highly damped. In this study, instead of solving such an unstable problem, it is assumed that wave-fields in transformed domain can be approximated by sum of ray series. And for further simplicity, reflection and refraction energy compared to that of direct wave is weak enough to be neglected. Then first arrival can be approximated by calculating the traveltime of direct wave only. But these assumptions are valid when the conductivity contrast between background medium and the target anomalous body is low enough. So this approach can only be applied to the models with low conductivity contrast. To verify the algorithm, traveltime calculated by this approach was compared to that of direct transform method and exact traveltime, calculated analytically, for homogeneous whole space. The error in first arrival picked by this study was less than that of direct transformation method, especially when the number of frequency samples is less than 10, or when the data are noisy. Layered earth model with varying conductivity contrasts and inclined dyke model have been successfully imaged by applying nonlinear traveltime tomography in 30 iterations within three CPU minutes on a IBM Pentium Pro 200 MHz.

  • PDF

Elastic Behavior of Zeolite Mesolite under Hydrostatic Pressure (제올라이트 메소라이트의 수압 하 탄성특성)

  • Lee, Yong-Jae;Lee, Yong-Moon;Seoung, Dong-Hoon;Jang, Young-Nam
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.509-512
    • /
    • 2009
  • Powder diffraction patterns of the zeolite mesolite ($Na_{5.33}Ca_{5.33}Al_{16}Si_{24}O_{80}{\cdot}21.33H_2O$), with a natrolite framework topology were measured as a function of pressure up to 5.0 GPa using a diamond-anvil cell and a $200{\mu}m$-focused monochromatic synchrotron X-ray. Under the hydrostatic conditions mediated by pore-penetrating alcohol and water mixture, the elastic behavior of mesolite is characterized by continuous volume expansion between ca. 0.5 and 1.5 GPa, which results from expansion in the ab-plane and contraction along the c-axis. Subsequent to this anomalous behavior, changes in the powder diffraction patterns suggest possible reentrant order-disorder transition. The ordered layers of sodium- and calcium-containing channels in a 1:2 ratio along the b-axis attribute to the $3b_{natrolite}$ cell below 1.5 GPa. When the volume expansion is completed above 1.5 GPa, such characteristic ordering reflections disappear and the $b_{natrolite}$ cell persists with marginal volume contraction up to ca. 2.5 GPa. Further increase in pressure leads to progressive volume contraction and appears to generate another set of superlattice reflections in the $3c_{natrolite}$ cell. This suggests that mesolite in the pressure-induced hydration state experiences order-disorder-order transition involving the motions of sodium and calcium cations either through cross-channel diffusion or within the respective channels.