• 제목/요약/키워드: Anodized Surface Treatment

검색결과 72건 처리시간 0.037초

The Biocompatibility of HA Film Deposition on Anodized Titanium Alloy

  • Lee, Kang;Choe, Han-Choel;Kim, Byung-Hoon;Ko, Yeong-Mu
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2009년도 추계학술대회 초록집
    • /
    • pp.213-214
    • /
    • 2009
  • A thin film hydroxyapatite (HA) films was deposited on anodized titanium by RF sputtering method. The anodized titanium enhanced the biocompatibility of the Ti and the bioactivity was improved further by the HA deposited on the anodized Ti. $TiO_2$ layer with $0.2{\sim}0.5{\mu}$ diameter pore size was formed on the Ti surface by anodization. Anodized $TiO_2$ layer analysis HA film deposited, oxide pore size and number decreased compared with non-HA deposited surface. The corrosion resistance of HA deposited/anodized Ti was higher than that of the non-treatment Ti alloy in Hank's solution, indicating better protective effect. From the results of cell culture using MTT assays, the best cell proliferation showed in HA deposited surface after anodization of Ti surfaces compared with another surface treatment.

  • PDF

알루미늄 6061 합금 양극산화 후 열처리에 따른 표면 특성 관찰 (Effects of Heat Treatment on Surface Properties of Aluminum 6061 Alloy After Anodization)

  • 이승민;정찬영
    • Corrosion Science and Technology
    • /
    • 제21권6호
    • /
    • pp.495-502
    • /
    • 2022
  • Anodization is a representative electrochemical surface treatment method that can improve both heat resistance and corrosion resistance by forming an anodization film on the surface of the aluminum. However, these properties can be changed after an additional heat treatment process. In this study, Al 6061 was subjected to an anodization process at 60 V for 1 hour, 5 hours, or 9 hours. An additional heat treatment process was performed at 500 ℃ for 30 minutes. Field emission scanning electron microscopy (FE-SEM) analysis revealed that the thickness of the anodized film was increased in proportion to the anodization time. Both pore size and pore diameter of the anodized film was also increased after anodization. After an additional heat treatment process, there were no significant changes in the thickness, pore size, or pore diameter of the anodized film. Heat resistance was confirmed through thermal analysis and chemical resistance was evaluated with a potentiodynamic polarization test.

The effects of Hydroxyapatite nano-coating implants on healing of surgically created circumferential gap in dogs

  • Chae, Gyung-Joon;Lim, Hyun-Chang;Choi, Jung-Yoo;Chung, Sung-Min;Lee, In-Seop;Cho, Kyoo-Sung;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • 제38권sup2호
    • /
    • pp.373-384
    • /
    • 2008
  • Purpose: The aim of this study is to compare the healing response of various Hydroxyapatite(HA) coated dental implants by Ion-Beam Assisted Deposition(IBAD) placed in the surgically created circumferential gap in dogs. Materials and methods: In four mongrel dogs, all mandibular premolars and the first molar were extracted. After an 8 weeks healing period, six submerged type implants were placed and the circumferential cylindrical 2mm coronal defects around the implants were made surgically with customized step drills. Groups were divided into six groups : anodized surface, anodized surface with 150nm HA and heat treatment, anodized surface with 300nm HA and heat treatment, anodized surface with 150nm HA and no heat treatment, and anodized surface with 150nm HA, heat treatment and bone graft, anodized surface with bone graft. The dogs were sacrificed following 12 weeks healing period. Specimens were analyzed histologically and histomorphometrically. Results: During the healing period, healing was uneventful and implants were well maintained. Anodized surface with HA coating and $430^{\circ}C$ heat treatment showed an improved regenerative characteristics. Most of the gaps were filled with newly regenerated bone. The implant surface was covered with bone layer as base for intensive bone formation and remodeling. In case that graft the alloplastic material to the gaps, most of the coronal gaps were filled with newly formed bone and remaining graft particles. The bone-implant contact and bone density parameters showed similar results with the histological findings. The bone graft group presented the best bone-implant contact value which had statistical significance. Conclusion: Within the scope of this study, nano-scale HA coated dental implants appeared to have significant effect on the development of new bone formation. And additional bone graft is an effective method in overcoming the gaps around the implants.

Surface Characteristics of Anodized Ti-30Nb-xTa Alloys with Ta Content

  • Kim, Eun-Sil;Ko, Yeong-Mu;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2012년도 춘계학술발표회 논문집
    • /
    • pp.254-254
    • /
    • 2012
  • The purposed of this work was to determine surface charateristics of anodized Ti-30Nb-xTa alloys with Ta content. Samples were prepared by arc melting, followed by followed by homogenization for 12 hr at $1000^{\circ}C$ in argon atmosphere. The electrolyte for anodization treatment was prepared by mixing 465ml $H_2O$ with 35M $H_3PO_4$ and anodized at 180V to 220V. The microstructures of the alloys were examined by X-ray diffractometer (XRD) and optical microscopy (OM). Surface characteristics of anodized Ti-30Nb-xTa alloys was investigated by potentiodynamic test and potentiostatic in 0.9% Nacl solution at $36.5{\pm}1^{\circ}C$. It was observed that the changed ${\alpha}$ phase to ${\beta}$ phase with Ta content.

  • PDF

후열처리에 의한 알루미늄 산화층의 특성 향상 (Enhanced Properties of Aluminum Oxide Layers with Post Heat Treatment)

  • 전윤남;김상준;박지현;정나겸
    • 한국표면공학회지
    • /
    • 제52권5호
    • /
    • pp.275-281
    • /
    • 2019
  • Anodization is widely used to enhance the properties of aluminum, such as hardness, electric resistance, abrasion resistance, corrosion resistance etc. But these properties can be enhanced with additional process. According to the partial crystallization of oxide layer with post heat treatment, enhanced hardness can be expected with partial crystallization. In this study, post heat treatments were applied to the anodized aluminum alloys of Al6061 to achieve the partial crystallization, and crystallizations were evaluated with the reduced breakdown voltages. Interestingly, remarkable enhanced hardness (21~29%), abrasion resistance (26~62%), and reduced breakdown voltage (24~44%) were observed for the sulfuric acid anodized samples when we annealed the anodized samples with 1hour post heat treatment at $360^{\circ}C$. For the Al5052 alloys, a lot of cracks were observed when we applied the post heat treatment.

타이타늄 표면 처리 특성에 따른 젖음성에 관한 연구 (Wettability of titanium implants depending upon surface properties)

  • 한영수;신상완
    • 대한치과보철학회지
    • /
    • 제47권1호
    • /
    • pp.12-20
    • /
    • 2009
  • 연구목적: 임플란트가 식립되어질 때 매식체는 조직액과 접촉하게 된다. 임플란트의 조직액 흡착은 표면처리에 따라 다양하게 나타난다. 이 때 임플란트 시편의 표면 거칠기와 젖음성과의 상관관계를 분석하고자 하였다. 연구재료 및 방법: 표면 거칠기와 젖음성의 상관관계를 측정하기 위해 네 종류의 임플란트 시편을 각각 5종류 만들었다. 각각의 그룹은 그룹 A: Machined Surface, 그룹 B: Anodized surface, 그룹 C: RBM (HA blasting) surface, 그룹 D: CMP (calcium methaphosphate) coating surface이다. 연구결과: 1. 표면의 거칠기는 RBM, CMP, Anodized, Machined 그룹 순서로 거칠었다. RBM과 CMP는 통계적으로 유의차가 없었다 (P<.05). 2. 젖음성은 Anodized, RBM, CMP, Machined 그룹 순서로 높았다. CMP와 Machined는 통계적으로 유의차가 없었다 (P<.05). 3. 표면 거칠기와 젖음성과의 상관관계는 없었다.

Al-Mg합금의 컬러에 미치는 양극산화 및 착색처리의 영향 (Effect of Anodizing and Dyeing Treatments on Coloring of Al-Mg)

  • 배성화;이현우;손인준
    • 한국표면공학회지
    • /
    • 제52권1호
    • /
    • pp.30-36
    • /
    • 2019
  • In this study, we investigated the effects of anodizing time, dyeing treatment time, and variations in coloring concentration on the color of an AA5052 alloy processed by dye-treated anodizing. The outward color of the anodized film changed to deep red according to increases in anodizing time, dyeing treatment time, and coloring concentration; accordingly, lightness $L^*$ decreased and saturation $a^*$ and $b^*$ increased. The concentration of the dye and the UV-visible absorbance showed a nearly perfect linear relationship, allowing a quantitative analysis of the absorbed dye. Because the quantity of absorbed dye increased as anodizing time, dyeing treatment time, and coloring concentration increased, the outward color of the anodized film deepened. In addition, from the GD-OES depth profile, we found that the dye was preferentially absorbed on the surface of the porous anodized film.

A STUDY ON OSTEOBLAST-LIKE CELL RESPONSES TO SURFACE-MODIFIED TITANIUM

  • Hong Min-Ah;Kim Yung-Soo;Kim Chang-Whe;Jang Kyung-Su;Lee Jae-Il
    • 대한치과보철학회지
    • /
    • 제41권3호
    • /
    • pp.300-318
    • /
    • 2003
  • Statement of problem: The success of implants depends on intimate and direct contact of implant material on bone tissue and on functional relationship with soft tissue contact. Creation and maintenance of osseointegration depend on the understanding of the tissue's healing, repairing, and remodeling capacity and these capacities rely on cellular behavior. Altering the surface properties can modify cellular responses such as cell adhesion, cell motility, bone deposition, Therefore, various implant surface treatment methods are being developed for the improved bone cell responses. Purpose: The purpose of this study was to evaluate the responses of osteoblast-like cells to surface-modified titanium. Materials and Methods: The experiment was composed of four groups. Group 1 represented the electropolished surface. Group 2 surfaces were machined surface. Group 3 and Group 4 were anodized surfaces. Group 3 had low roughness and Group 4 had high roughness. Physicochemical properties and microstructures of the discs were examined and the responses of osteoblast-like cells to the discs were investigated. The microtopography was observed by SEM. The roughness was measured by three-dimension roughness measuring system. The microstructure was analyzed by XRD, AES. To evaluate cell responses to modified titanium surfaces, osteoblasts isolated from calvaria of neonatal rat were cultured. Cell count, morphology, total protein measurement and alkaline phosphatase activities of the cultures were examined. Results and Conclusion: The results were as follows 1. The four groups showed specific microtopography respectively. Anodized group showed grain structure with micropores. 2. Surface roughness values were, from the lowest to the highest, electropolished group, machined group, low roughness anodized group, and high roughness anodized group. 3. Highly roughened anodized group was found to have increased surface oxide thickness and surface crystallinity. 4. The morphology of cells, flattened or spherical, were different from each other. In the electropolished group and machined group, the cells were almost flattened. In two anodized groups, some cells were spherical and other cells were flattened. And the 14 day culture cells of all of the groups were nearly flattened due to confluency. 5. The number of attached cells was highest in low roughness anodized group. And the machined group had significantly lower cell count than any other groups(P<.05). 6. Total protein contents showed no difference among groups. 7. The level of alkaline phosphatase activities was higher in the anodized groups than electropolished and machined groups(P<.05).

양극산화와 열수처리한 니오비움 금속의 표면특성 (Surface Characterization of Anodized and Hydrothermal Treated Niobium Metal)

  • 원대희;김영순;윤동주;이민호;배태성
    • 한국재료학회지
    • /
    • 제15권2호
    • /
    • pp.134-138
    • /
    • 2005
  • This study was performed to investigate the surface properties of electrochemically oxidized pure niobium by anodic oxide and hydrothermal treatment technique. Niobium specimens of $10mm\times10mm\times1.0mm$ in dimension were polished sequentially from $\#600,\;\#800,\;\#1000$ emery paper. The surface of pure niobium sperimens was anodized in an electrolytic solution that was dissolved calcium and phosphate in water. The electrolytic voltage was set in the range of 250 V and the current density was $10mA/cm^2$. The specimen was hydrothermal treated in high-pressure steam at $300^{\circ}C$ for 2 hours using an autoclave. And all specimens were immersed in the in the Hanks' solution nth pH 7.4 at $37^{\circ}C$ for 30 days. The surface of specimen was characterized by surface roughness, scanning electron microscope(SEM), energy dispersion X-ray analysis(EDX), X-ray photoemission spectroscopy(XPS) test. The value of surface roughness was the highest in the anodized sample and $0.41{\pm}0.04\;{\mu}m$. The results of the SEM observation show that oxide layers of the multi porosity in the anodized sample were piled up on another, and hydroxyapatite crystal was precipitate from the surface of the hydrothermal treated sample. In the XPS analysis, O, Nb, C peak and small amounts of N peak were found in the polished specimens while Ca and P peak in addition to O, Nb, C and peak were observed in the hydrothermal treated sample.

A STUDY ON THE RESPONSES OF OSTEOBLASTS TO VARIOUS SURFACE-TREATED TITANIUM

  • Lee Joung-Min;Kim Yung-Soo;Kim Chang-Whe;Jang Kyung-Soo;Lim Young-Jun
    • 대한치과보철학회지
    • /
    • 제42권3호
    • /
    • pp.307-326
    • /
    • 2004
  • Statement of problem. The long-term success of implants is the development of a stable direct connection between bone and implant surface, which must be structural and functional. To improve a direct implant fixation to the bone, various strategies have been developed focusing on the surface of materials. Among them, altering the surface properties can modify cellular responses such as cell adhesion, cell motility and bone deposition. Purpose. This study was to evaluate the cellular behaviors on the surface-modified titanium by morphological observation, cellular proliferation and differentiation. Material and methods. Specimens were divided into five groups, depending on their surface treatment: electropolishing(EP) anoclizing(AN), machining(MA), blasting with hydroxyapatite particle(RBM) and electrical discharge machining(EDM). Physicochemical properties and microstructures of the specimens were examined and the responses of osteoblast-like cells were investigated. The microtopography of specimens was observed by scanning electron microscopy(SEM). Surface roughness was measured by a three-dimensional roughness measuring system. The microstructure was analyzed by X-ray diffractometer(XRD) and scanning auger electron microscopy(AES). To evaluate cellular responses to modified titanium surfaces, osteoblasts isolated from neonatal rat were cultured. The cellular morphology and total protein amounts of osteoblast-like cell were taken as the marker for cellular proliferation, while the expression of alkaline phosphatase was used as the early differentiation marker for osteoblast. In addition, the type I collagen production was determined to be a reliable indicator of bone matrix synthesis. Results. 1. Each prepared specimen showed specific microtopography at SEM examination. The RBM group had a rough and irregular pattern with reticulated appearance. The EDM-treated surface had evident cracks and was heterogeneous consisting of broad sheet or plate with smooth edges and clusters of small grains, deep pores or craters. 2. Surface roughness values were, from the lowest to the highest, electropolished group, anodized group, machined group, RBM group and EDM group. 3. All groups showed amorphous structures. Especially anodized group was found to have increased surface oxide thickness and EDM group had titaniumcarbide(TiC) structure. 4. Cells on electropolished, anodized and machined surfaces developed flattened cell shape and cells on RBM appeared spherical and EDM showed both. After 14 days, the cells cultured from all groups were formed to be confluent and exhibited multilayer proliferation, often overlapped or stratified. 5. Total protein amounts were formed to be quite similar among all the group at 48 hours. At 14 days, the electropolished group and the anodized group induced more total protein amount than the RBM group(P<.05). 6. There was no significant difference among five groups for alkaline phosphatase(ALP) activity at 48 hours. The AN group showed significantly higher ALP activity than any other groups at 14 days(P<.05). 7. All the groups showed similar collagen synthesis except the EDM group. The amount of collagen on the electropolished and anodized surfaces were higher than that on the EDM surface(P<.05).