• 제목/요약/키워드: Anodic material

검색결과 229건 처리시간 0.029초

Performances of Metallic (sole, composite) and Non-Metallic Anodes to Harness Power in Sediment Microbial Fuel Cells

  • Haque, Niamul;Cho, Daechul;Kwon, Sunghyun
    • Environmental Engineering Research
    • /
    • 제19권4호
    • /
    • pp.363-367
    • /
    • 2014
  • One chambered sediment microbial fuel cell (SMFC) was equipped with Fe, brass (Cu/Zn), Fe/Zn, Cu, Cu/carbon cloth and graphite felt anode. Graphite felt was used as common cathode. The SMFC was membrane-less and mediator-less as well. Order of anodic performance on the basis of power density was Fe/Zn ($6.90Wm^{-2}$) > Fe ($6.03Wm^{-2}$) > Cu/carbon cloth ($2.13Wm^{-2}$) > Cu ($1.13Wm^{-2}$) > brass ($Cu/Zn=0.24Wm^{-2}$) > graphite felt ($0.10Wm^{-2}$). Fe/Zn composite anode have twisted 6.73% more power than Fe alone, Cu/carbon cloth boosted power production by 65%, and brass (Cu/Zn) produced 65% less power than Cu alone. Graphite felt have shown the lowest electricity generation because of its poor galvanic potential. The estuarine sediment served as supplier of oxidants or electron producing microbial flora, which evoked electrons via a complicated direct microbial electron transfer mechanism or making biofilm, respectively. Oxidation reduction was kept to be stationary over time except at the very initial period (mostly for sediment positioning) at anodes. Based on these findings, cost effective and efficient anodic material can be suggested for better SMFC configurations and stimulate towards practical value and application.

Electric power generation from sediment microbial fuel cells with graphite rod array anode

  • Wang, Zejie;Lim, Bongsu
    • Environmental Engineering Research
    • /
    • 제25권2호
    • /
    • pp.238-242
    • /
    • 2020
  • Sediment microbial fuel cells (SMFCs) illustrated great potential for powering environmental sensors and bioremediation of sediments. In the present study, array anodes for SMFCs were fabricated with graphite rods as anode material and stainless steel plate as electric current collector to make it inconvenient to in situ settle down and not feasible for large-scale application. The results demonstrated that maximum power of 89.4 ㎼ was obtained from three graphite rods, twice of 43.3 ㎼ for two graphite rods. Electrochemical impedance spectroscopy revealed that three graphite rods resulted in anodic resistance of 61.2 Ω, relative to 76.0 Ω of two graphite rods. It was probably caused by the parallel connection of the graphite rods, as well as more biomass which could reduce the charge transfer resistance of the biofilm anode. The presently designed array configuration possesses the advantages of easy to enlarge the surface area, decrease in anodic resistance because of the parallel connection of each graphite rod, and convenience to berry into sediment by gravity. Therefore, the as prepared array node would be an effective method to fabricate large-scale SMFC and make it easy to in situ applicate in natural sediments.

Anodic Dissolution Property and Structure of Passive Films on Equiatomic TiNi Intermetallic Compound

  • Lee, Jeong-Ja;Yang, Won-Seog;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • 제6권6호
    • /
    • pp.311-315
    • /
    • 2007
  • The anodic polarization behavior of equiatomic TiNi shape memory alloy with pure titanium as a reference material was investigated by means of open circuit potential measurement and potentiodynamic polarization technique. And the structure of passive films on TiNi intermetallic compounds was also conducted using AES and ESCA. While the dissolved Ni(II) ion did not affect the dissolution rate and passivation of TiNi alloy, the dissolved Ti(III) ion was oxidated to Ti(IV) ion on passivated TiNi surface at passivation potential. It has also been found that the Ti(IV) ion increases the steady state potential, and passivates TiNi alloy at a limited concentration of Ti(IV) ion. The analysis by AES showed that passive film of TiNi alloy was composed of titanium oxide and nickel oxide, and the content of titanium was three times higher than that of nickel in outer side of passive film. According to the ESCA analysis, the passive film was composed of $TiO_2$ and NiO. It seems reasonable to suppose that NiO could act as unstabilizer to the oxide film and could be dissolved preferentially. Therefore, nickel oxide contained in the passive film may promote the dissolution of the film, and it could be explained the reason of higher pitting susceptibility of TiNi alloy than pure Ti.

전기화학기법에 의한 슈퍼 오스테나이트 스테인리스강의 열화손상 평가 (An Evaluation of Degraded Damage for Superaustenitic Stainless Steel by Electrochemical Polarization Technique)

  • 권일현;이송인;백승세;이종기;;유효선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.143-148
    • /
    • 2001
  • This research was undertaken to clarify effects of thermal aging on electrochemical and mechanical properties of superaustenitic stainless steel. The steel was artificially aged at $300{\sim}650^{\circ}C$ for $240{\sim}10,000hrs$. and investigated at $-196{\sim}650^{\circ}C$ using small punch(SP) test. Also, the change in electrochemical properties caused by effects of thermal aging was investigated using electrochemical anodic polarization test in a KOH electrolyte. Carbides and ${\eta}-phase(Fe_2Mo)$ precipitated in the grain bounderies seem to deteriorate the mechanical properties by decreasing cohesive strength in the grain bounderies and promote the current density observed in electrochemical polarization curves. The electrochemical and mechanical properties of superaustenitic stainless steel was drastically decreased in the specimen aged at $650^{\circ}C$.

  • PDF

국부 가열 금형을 이용한 플라스틱 나노 구조표면 사출성형 연구 (A Study on Plastic Injection Molding of NanosStructured Surface with a Local Mold Heating System)

  • 라문우;박장민;김동언
    • 한국기계가공학회지
    • /
    • 제14권4호
    • /
    • pp.8-13
    • /
    • 2015
  • In this study, we fabricated and characterized a nanostructured surface based on a plastic injection molding with a local mold heating (LMH) system. A metal mold core with a closed packed nano convex array (CVA) was achieved by integrated engineering procedures: (1) master template fabrication by anodic aluminum oxidation (AAO), (2) nickel electroforming (NE) process, and (3) post-processing by precision machining. The nickel mold core was utilized to replicate a surface with a closed packed nano concave-array (CCA) based on injection molding using cyclic olefin copolymer (COC) as a plastic material. In particular, an LMH system was introduced to enhance transcription quality of the nano structures by delaying solidification of molten polymer near the surface of the mold core.

해수 내 아크 아연 용사코팅 층의 전기화학적 특성 (Electrochemical Characteristics of Arc Zn Thermal Spray Coating Layer in Sea Water)

  • 박일초;서광철;이경우;김성종
    • 한국표면공학회지
    • /
    • 제48권6호
    • /
    • pp.343-348
    • /
    • 2015
  • In this paper, arc Zn thermal spray coating was carried out on the SS400 steel, and then various electrochemical characteristics and surface damage behavior of Zn thermal spray coating layer were analyzed. As the results, the potential of Zn thermal spray coating layer presented driving voltage above 300 mV compare to that of SS400 steel. The passivity characteristic in anodic polarization curve was not presented. It was adequate to as sacrificial anode material. In the surface damage after galvanostatic experiments, uniform corrosion tendency of Zn thermal spray coating layer was clearly observed with acceleration of the dissolution reaction. In conclusion, Zn thermal spray coating could be determined to represent the corrosion protection effect by stable sacrificial anodic cathodic protection method in seawater because it had sufficient driving voltage and uniform corrosion damage tendency for the SS400 steel.

Quantitative estimation of reversibility of the discharge process undergone by nickel hydroxide film cathodically deposited on pure nickel as a positive supercapacitor electrode using cyclic voltammetry and potential drop method

  • Pyun Su-Il;Moon Sung-Mo
    • 전기화학회지
    • /
    • 제1권1호
    • /
    • pp.8-13
    • /
    • 1998
  • This work presents the way how to evaluate the degree of reversibility of the discharging process undergone by the nickel hydroxide film cathodically deposited on pure nickel as a positive electrode for electrochemical capacitor using the combined cyclic voltammetry and potential drop method, supplemented by galvanostatic discharge and open-circuit potential transient methods. The time interval necessary just to establish the current reversal of anodic to cathodic direction from the moment just after applying the potential inversion of anodic to cathodic direction, was obtained on cyclic voltammogram. The cathodic charge density passed upon dropping the applied potential, was calculated on potentiostatic current density-time curve. Both the time interval and the cathodic charge density in magnitude can be regarded as being measures of the degree of reversibility of the discharging process undergone by the positive active material for supercapacitor, i.e. , the longer the time interval is, the lower is the degree of reversibility and the greater the cathodic charge density is, the higher is the degree of reversibility. From the applied potential dependences of the time interval and cathodic charge density, discharge at $0.42 V_{SCE}$ was determined to be the most reversible.

Fabrication of Field-Emitter Arrays using the Mold Method for FED Applications

  • Cho, Kyung-Jea;Ryu, Jeong-Tak;Kim, Yeon-Bo;Lee, Sang-Yun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제3권1호
    • /
    • pp.4-8
    • /
    • 2002
  • The typical mold method for FED (field emission display) fabrication is used to form a gate electrode, a gate oxide layer, and emitter tip after fabrication of a mold shape using wet-etching of Si substrate. However, in this study, new mold method using a side wall space structure was developed to make sharp emitter tips with the gate electrode. In new method, gate oxide layer and gate electrode layer were deposited on a Si wafer by LPCVD (low pressure chemical vapor deposition), and then BPSG (Boro phosphor silicate glass) thin film was deposited. After then, the BPSG thin film was flowed into the mold at high temperature in order to form a sharp mold structure. TiN was deposited as an emitter tip on it. The unfinished device was bonded to a glass substrate by anodic bonding techniques. The Si wafer was etched from backside by KOH-deionized water solution. Finally, the sharp field emitter array with gate electrode on the glass substrate was formed.

시편의 준비 방법 및 접촉저항이 알루미늄 합금의 아노다이징 피막 형성에 미치는 영향 (Effects of Specimen Preparation Method and Contact Resistance on the Formation of Anodizing Films on Aluminum Alloys)

  • 문성모
    • 한국표면공학회지
    • /
    • 제53권1호
    • /
    • pp.29-35
    • /
    • 2020
  • In this study, five different specimen preparation methods were introduced and their advantages and disadvantages were presented. One of them, an epoxy mounting method has advantages of constant exposure area, ease of surface preparation without touching the specimen surface during polishing or cleaning, use of small amount of material and ease of specimen reuse by polishing or etching. However, in order to eliminate unexpected errors resulting from preferable reaction at the specimen/epoxy interface and contact resistance between the specimen and copper conducting line for electrical connection, it is recommended to cover the wall side of the specimen with porous anodic oxide films and to remain the contact resistance lower than 1 ohm. The increased contact resistance between the specimen and Cu conducting line appeared to result in increases of anodizing voltage and solution temperature during anodizing by which thickness and hardness of anodizing film on Al2024 alloy were drastically decreased and color of the films became more brightened.

금속산화물 전극을 사용한 Furfuryl Alcohol의 양극산화 (Anodic Oxidation of Furfuryl Alcohol Using Metal Oxide Electrodes)

  • 유광식;이용택
    • 공업화학
    • /
    • 제3권3호
    • /
    • pp.482-490
    • /
    • 1992
  • 세종류의 금속산화물 전극을 양극으로 사용하여 methanol 용액중에서 furfuryl alcohol을 양극산화 시켜 2,5-dimethoxy-2,5-dihydrofurfuryl alcohol을 전해합성 하였다. 각 전극들은 티타늄 재질상에 산화주석($SnO_2$)과 삼산화이안티몬($Sb_2O_3$)의 반도체 혼합물층을 전기로 내에어 만들고, 그 위에 양극산화방법으로 ${\alpha}-PbO_2$, ${\beta}-PbO_2$, $MnO_2$등의 금속산화물을 전착(electrodeposition)하여 3종의 전극을 제작하였다. 이산화납 전극이 이산화망간 전극에 비하여 양극 내식성이 우수하였으며 생성물의 수율(92%)도 백금전극을 사용했던 결과와 대등하였다.

  • PDF