• Title/Summary/Keyword: Anodic Oxidation

Search Result 324, Processing Time 0.025 seconds

Study of reflection rate character of anodized aluminum thin film (알루미늄 양극산화피막의 반사율 특성연구)

  • Kim, Seung-Kyum;Kim, Dong-Hyun;Joo, In-Joong;Nam, In-Tak;Kim, Hoon
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.227-232
    • /
    • 2003
  • Anodizing film was prepared by anodic oxidation of pure aluminum(purity > 99.50) using DC power supply for constant current mode in an electrolytic solution of surface of sulfuric acid. Effects of pre-treatment process such as chemical polishing, acid cleaning, alkali etching before anodic oxidation, were studied to microstructures and surface morphologies. A roughness on surface of anodizing film had to be decreased for amorphous phase by anodic oxidation. A roughness on surface of anodizing film decrease as annealing temperature increased in chemical polishing.

  • PDF

Surface Morphological Properties of Micro-arc Oxidation Coating on Al6061 Alloys using Unipolar Pulse (Unipolar pulse를 이용하여 형성된 Al6061 합금 표면의 MAO 코팅의 표면 구조에 대한 연구)

  • Kim, Nam-youl;Park, Seung-Ho;Park, Ki-Youg;Choi, Jin-Sub
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.5
    • /
    • pp.421-426
    • /
    • 2017
  • Herein, we investigated surface morphological characteristics of anodic films on Al6061 alloy prepared by unipolar pulsed Micro-arc oxidation (MAO) in a mixed solution of $Na_2SiO_3$ + KOH. The number and size of pores as well as craters on anodic alumina surface were studied as a function of different voltages, duty cycles and applied anodic current densities. The morphological characteristics of all samples were investigated by scanning electron microscopy, conforming that the most uniform surface morphology of MAO films on Al1050 alloy was obtained at high applied current density with low duty cycle.

Formation Mechanisms of TiO2 Layer by Electrochemical Method (전기화학적 방법에 의한 TiO2 피막의 생성기구)

  • O, Han-Jun;Lee, Jong-Ho;Jang, Jae-Myeong;Ji, Chung-Su
    • Korean Journal of Materials Research
    • /
    • v.12 no.6
    • /
    • pp.482-487
    • /
    • 2002
  • A $TiO_2$ film for photocatalyst was prepared by anodic oxidation at 180V in acidic electrolyte and film formation mechanism was studied. The major part of anodic $TiO_2$ film consisted of anatase type structure and surface morphology exhibited a porous cell structure. The thickness growth rate of the oxide film with anodization time revealed two-stage slope corresponds to the surface morphology between anodic films. The growth of pores on cell structure and the growth rate of film with two-stage slope are related to the constant formation rate of the $TiO_2$ layer.

Fabrication of nano-structured PMMA substrates for the improvement of the optical transmittance (반구형 나노 패턴의 크기에 따른 PMMA기판의 광특성 평가)

  • Park, Y.M.;Shin, H.G.;Kim, B.H.;Seo, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.217-220
    • /
    • 2009
  • This paper presents fabrication method of nano-structured PMMA substrates as well as evaluations of their optical transmittance. For anti-reflective surface, surface coating method had been conventionally used. However, it requires high cost, complicated process and post-processing times. In this study, we suggested the fabrication method of anti-reflective surface by the hot embossing process. Using the nano patterned master fabricated by anodic aluminum oxidation process. Anodic aluminum oxide(AAO) is widely used as templates or a molds for various applications such as carbon nano tube (CNT), nano rod and nano dots. Anodic aluminum oxidation process provides highly ordered regular nano-structures on the large area, while conventional pattering methods such as E-beam and FIB can fabricate arbitrary nano-structures on small area. We fabricated a porous alumina hole array with various inter-pore distance and pore diameter. In order to replicate nano-structures using alumina nano hole array patterns, we have carried out hot-embossing process with PMMA substrates. Finally the nano-structured PMMA substrates were fabricated and their optical transmittances were measured in order to evaluate the charateristivs of anti-reflection. Anti-reflective structure can be applied to various displays and automobile components.

  • PDF

Technological Trends in a local anodization (국부적 양극산화 기술 동향)

  • Kwang-Mo Kang;Sumin Choi;Yoon-Chae Nah
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.2
    • /
    • pp.115-124
    • /
    • 2023
  • Anodization is an electrochemical process that electrochemically converts a metal surface into an oxide layer, resulting in enhanced corrosion resistance, wear resistance, and improved aesthetic appearance. Local anodization, also known as selective anodization, is a modified process that enables specific regions or patterns on the metal surface to undergo anodization instead of the entire surface. Several methods have been attempted to produce oxide layers via localized anodic oxidation, such as using a mask or pre-patterned substrate. However, these methods are often intricate, time-consuming, and costly. Conversely, the direct writing or patterning approach is a more straightforward and efficient way to fabricate the oxide layers. This review paper intends to enhance our comprehension of local anodization and its potential applications in various fields, including the development of nanotechnologies. The application of anodization is promising in surface engineering, where the anodic oxide layer serves as a protective coating for metals or modifies the surface properties of materials. Furthermore, anodic oxidation can create micro- and nano-scale patterns on metal surfaces. Overall, the development of efficient and cost-effective anodic oxidation methods is essential for the advancement of various industries and technologies.

Formation of Anodic Films on Pure Mg and Mg alloys for Corrosion Protection

  • Moon, Sungmo;Nam, Yunkyung
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.16-16
    • /
    • 2012
  • Mg and its alloys have been of great interest because of their low density of 1.7, 30% lighter than Al, but their wide applications have been limited because of their poor resistances against corrosion and/or abrasion. Corrosion resistance of Mg alloys can be improved by formation of anodic films using anodic oxidation method in aqueous electrolytes. Plasma electrolytic oxidation (PEO) is one of anodic oxidation methods by which hard anodic films can be formed as a result of micro-arc generation under high electric field. PEO method utilize not only substrate elements but also chemical components in electrolytes to form anodic films on Mg alloys. PEO films formed on AM50 magnesium alloy in an acidic fluozirconate electrolyte were observed to consist of mainly $ZrO_2$ and $MgF_2$. Liu et al reported that PEO coating on AM30 Mg alloy consists of $MgF_2$-rich outer porous layer and an MgO-rich dense inner layer. PEO films prepared on ACM522 Mg die-casting alloy in an aqueous phosphate solution were also reported to be composed of monoclinic $Mg_3(PO_4)_2$. $CeO_2$-incorporated PEO coatings were also reported to be formed on AZ31 Mg alloys in $CeO_2$ particle-containing $Na_2SiO_3$-based electrolytes. Magnesium tin hydroxide ($MgSn(OH)_6$) was also produced on AZ91D alloy by PEO process in stannate-containing electrolyte. Effects of $OH^-$, $F^-$, $PO{_4}^{3-}$ and $SiO{_3}^{2-}$ ions and alloying elements of Al and Sn on the formation of PEO films on pure Mg and Mg alloys and their protective properties against corrosion have been investigated in this work. $PO{_4}^{3-}$, $F^-$ and $SiO{_3}^{2-}$ ions were observed to contribute to the formation of PEO films but $OH^-$ ions were found to break down the surface films under high electric field. The effect of pulse current on the formation of PEO films will be also reported.

  • PDF

Anodic Oxidation Behavior of AZ31 Magnesium Alloy in Aqueous Electrolyte Containing Various Na2CO3 Concentrations

  • Moon, Sungmo;Kim, Yeajin
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.4
    • /
    • pp.331-338
    • /
    • 2016
  • In this work, anodic oxidation behavior of AZ31 Mg alloy was studied as a function of $Na_2CO_3$ concentration in electrolyte by voltage-time curves and observation of surface appearances and morphologies after the anodic treatments, using optical microscopy and confocal scanning laser microscopy (CSLM). The voltage-time curves of AZ31 Mg alloy surface and surface appearances after the anodic treatments showed three different regions with $Na_2CO_3$ concentration : region I, below 0.2 M $Na_2CO_3$ where shiny surface with a number of small size pits; region II, between 0.4 M and 0.6 M $Na_2CO_3$ where dark surface with relatively low number of large size burned or dark spots; region III, more than 0.8 M $Na_2CO_3$ where bright surface with or without large size dark spots were obtained. The anodically treated AZ31 Mg alloy surface became significantly brightened with increasing $Na_2CO_3$ concentration from 0.5 M to 0.8 M which was attribute to the formation of denser and smoother surface films. Pits and porous protruding reaction products were found at relatively large size and small size spots, respectively, on the AZ31 Mg alloy surface in low concentration of $Na_2CO_3$ less than 0.2 M. The formation of pits is attributed to the result of repetition of the formation and detachment of porous anodic reaction products. Based on the experimental results obtained in this work, it is concluded that more uniform, denser and smoother surface of AZ31 Mg alloy could be obtained at more than 0.8 M $Na_2CO_3$ concentration if there is no other oxide forming agent.

Synthesis of Cyclitol Derivatives (Ⅲ). Electrolytic Oxidation of myo-Inositol (Cyclitol 유도체 합성에 관한 연구 (제3보)-myo-Inositol의 전해 산화-)

  • Joo Hwan Sohn;Chong Woo Nam;Yu Ok Kim
    • Journal of the Korean Chemical Society
    • /
    • v.15 no.3
    • /
    • pp.127-132
    • /
    • 1971
  • To obtain the various kinds of inosose stereomers, the process of electrochemical oxidation is more effective than chemical oxidation of myo-inositol. So that myo-inositol aqueous solution was electrolyzed by platinum and lead peroxide anode to confirming the occurrence of electrochemical oxidation. The result is that myo-inosose-2 is producing with high yield comparatively by electrolytic oxidation of myo-inositol. Also we studied about the relation between the electrolytic current efficiency and electrolytic temperature and anodic current density. The current efficiency is rising with lowering of electrolytic temperature identically in both anode such as platinum and lead peroxide and also rising with increasing of anodic current density in platinum anode, but inversely in lead peroxide.

  • PDF

Gas Permeation Characteristics of Microporous Alumina Membrane Prepared by Anodic oxidation (양극산화에 의한 다공성 알루미나 막의 제조 및 기체투과 특성)

  • Shim, Won;Lee, Chang-Woo;Hahm, Yeong-Min
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.212-217
    • /
    • 1999
  • Porous alumina membrane with asymmetrical structure was prepared by anodic oxidation under constant DC current mode in aqueous solution of sulfuric acid. In order to produce membrane with improved properties, the aluminium plate was pre-treated with thermal oxidation, chemical polishing and electrochemical polishing before anodic oxidation. The thickness and pore diameter of the membrane were controlled by current density and charge density, respectively. The upper layer of 20 nm under of pore diameter was produced under very low current density while the lower layer of 36 nm pore diameter was produced under higher current density. The thickness of the membrane was about $80{\sim}90{\mu}m$ and that of the upper layer was $6{\mu}m$. We found that the mechanism of gas permeation through the membrane depended on Knudsen diffusion.

  • PDF