• Title/Summary/Keyword: Anodic

Search Result 1,274, Processing Time 0.025 seconds

Development of Bismuth Alloy-Based Anode Material for Lithium-Ion Battery (리튬이온 전지용 Bismuth 합금 기반 음극재 개발)

  • Chi Rong Sun;Jae Hoon Kim
    • Clean Technology
    • /
    • v.30 no.1
    • /
    • pp.23-27
    • /
    • 2024
  • Bismuth is a promising anodic for Li-ion batteries (LIBs) due to its adequate operating voltage and high-volume capacity (3,765 mAh cm-3). Nevertheless, inevitable volume expansion during Bi alloy reactions leads to severe capacity loss and cell destruction. To address this, a complex of bismuth alloy nanoparticles (Bi@NC) embedded in an N doping-carbon coating is fabricated via a simple pyrolysis method. Nano-sized bismuth alloys can improve the reaction dynamics through a shortened Li+-ion diffusion path. In addition, the N-doped carbon coating effectively buffers the volume change of bismuth during the extended alloy/dealloy reaction with Li+ ions and maintains an effective conductive network. Based on the Thermogravimetric analysis (TGA) showed high bismuth alloy loading (80.9 wt%) and maintained a high gravimetric capacity of 315 mAh g-1 up to 100 cycles with high volumetric capacity of 845.6 mAh cm-3.

A STUDY ON IN VIVO AND IN VITRO AMALGAM CORROSION (아말감의 구강내 부식 및 인공 부식에 관한 연구)

  • Lim, Byong-Mok;Kwon, Hyuk-Choon;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.1
    • /
    • pp.1-33
    • /
    • 1997
  • The objective of this study was to analyze the in vitro and in vivo corrosion products of low and high copper amalgams. The four different types of amalgam alloy used in this study were Fine cut, Caulk spherical, Dispersalloy, and Tytin. After each amalgam alloy and Hg were triturated according to the directions of the manufacturer by means of the mechanical amalgamator(Amalgam mixer. Shinhung Co. Korea), the triturated mass was inserted into a cylindrical metal mold which was 12mm in diameter and 10mm in height. The mass was condensed by 150Kg/cm compressive force. The specimen was removed from the mold and aged at room temperature for about seven days. The standard surface preparation was routinely carried out by emery paper polishing under running water. In vitro amalgam specimens were potentiostatically polarized ten times in a normal saline solution at $37^{\circ}C$(potentiostat : HA-301. Hukuto Denko Corp. Japan). Each specimen was subjected to anodic polarization scan within the potential range -1700mV to+400mV(SCE). After corrosion tests, anodic polarization curves and corrosion potentials were obtained. The amount of component elements dissolved from amalgams into solution was measured three times by ICP AES(Inductive Coupled Plasma Atomic Emission Spectrometry: Plasma 40. Perkim Elmer Co. U.S.A.). The four different types of amalgam were filled in occlusal and buccal class I cavities of four human 3rd molars. After about five years the restorations were carefully removed after tooth extraction to preserve the structural details including the deteriorated margins. The occlusal surface, amalgam-tooth interface and the fractured surface of in vivo amalgam corrosion products were analyzed. In vivo and in vitro amalgam specimens were examined and analyzed metallographically by SEM(Scanning Electron Microscope: JSM 840. Jeol Co. Japan) and EDAX(Energy Dispersive Micro X-ray Analyser: JSM 840. Jeol Co. Japan). 1. The following results are obtained from in vitro corrosion tests. 1) Corrosion potentials of all amalgams became more noble after ten times passing through the in vitro corrosion test compared to first time. 2) After times through the test, released Cu concentration in saline solution was almost equal but highest in Fine cut. Ag and Hg ion concentration was highest in Caulk spherical and Sn was highest in Dispersalloy. 3) Analyses of surface corrosion products in vitro reveal the following results. a)The corroded surface of Caulk spherical has Na-Sn-Cl containing clusters of $5{\mu}m$ needle-like crystals and oval shapes of Sn-Cl phase, polyhedral Sn oxide phase. b)In Fine cut, there appeared to be a large Sn containing phase, surrounded by many Cu-Sn phases of $1{\mu}m$ granular shapes. c)Dispersalloy was covered by a thick reticular layer which contained Zn-Cl phase. d)In Tytin, a very thin, corroded layer had formed with irregularly growing Sn-Cl phases that looked like a stack of plates. 2. The following results are obtained by an analysis of in vivo amalgam corrosion products. 1) Occlusal surfaces of all amalgams were covered by thick amorphous layers containing Ca-P elements which were abraded by occlusal force. 2) In tooth-amalgam interface, Ca-P containing products were examined in all amalgams but were most clearly seen in low copper amalgams. 3) Sn oxide appeared as a polyhedral shape in internal space in Caulk spherical and Fine cut. 4) Apical pyramidal shaped Sn oxide and curved plate-like Sn-Cl phases resulted in Dispersalloy. 5) In Tytin, Sn oxide and Sn hydroxide were not seen but polyhedral Ag-Hg phase crystal appeared in internal space which assumed a ${\beta}_l$ phase.

  • PDF

The effect of Ca-P coatings of anodized implant surface on response of osteoblast-like cells in vitro (임플란트 표면의 Ca-P 코팅 방법이 MG63 골모유사세포 반응에 미치는 영향에 대한 in vitro 연구)

  • Kim, Il-Yeon;Jung, Sung-Min;Hwang, Soon-Jung;Shin, Sang-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.376-384
    • /
    • 2009
  • Purpose: The purpose of this study was to evaluate the response of osteoblast-like cells to Ca-P coated surface obtained via Ion beam-assisted deposition (IBAD) method and Sol-Gel process on anodized surface by cellular proliferation and differentiation. Material and methods: The surface of a commercially pure titanium (Grade IV) discs with dimension of 10mm diameter and 2 mm thickness was modified by anodic oxidation under a constant voltage of 300 V. The experimental groups were coated with Ca-P by the IBAD method and Sol-Gel process on anodized surface. The surface roughness (Ra) of specimens was measured by optical interferometer and each surface was examined by SEM. To evaluate cell response, MG63 cells were cultured and cell proliferation, ALP activity and the ability of cell differentiation were examined. Also, cell morphology was examined by SEM. The significant of each group was verified by Kruskal-Wallis Test ($\alpha$=.05). Results: The Ra value of Ca-P coated surface by IBAD method was significantly higher than Ca-P coated surface by Sol-gel process (P < .05). The level of cell proliferation and ALP activity was higher in Ca-P coated surface by IBAD method (P<.05). The expression of ALP showed higher level expression in Ca-P coated surface by IBAD method. Cells grown on Ca-P coated surface by IBAD method were uniformly distributed and developed a very close layer. Conclusion: These experiments showed better performances of Ca-P coated surface by IBAD method with respect to Ca-P coated surface by Sol-gel process. Ca-P coated surface by IBAD method appear to give rise more mature osteoblast characteristics and might result in increased bone growth and bone-implant contact.

Corrosion Characteristics of Cell-Covered Ternary Ti-Nb-Ta Alloy for Biomaterials

  • Kim, W.G.;Yu, J.W.;Choe, H.C.;Ko, Y.M.;Park, G.H.
    • Corrosion Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.62-67
    • /
    • 2009
  • Ti and Ti-alloys have good biocompatibility, appropriate mechanical properties and excellent corrosion resistance. However, the widely used Ti-6Al-4V is found to release toxic ions (Al and V) into the body, leading to undesirable long-term effects. Ti-6Al-4V has much higher elastic modulus (100 GPa) than cortical bone (20 GPa). Therefore, titanium alloys with low elastic modulus have been developed as biomaterials to minimize stress shielding. The electrochemical behavior of surface-modified and MC3T3-E1 cell-cultured Ti-30(Nb,Ta) alloys with low elastic modulus have been investigated using various electrochemical methods. Surfaces of test samples were treated as follows: $0.3{\mu}m$ polished; $25{\mu}m$, $50{\mu}m$ and $125{\mu}m$ sandblasted. Specimen surfaces were cultured with MC3T3-E1 cells for 2 days. Average surface roughness ($R_a$) and morphology of specimens were determined using a surface profilometer, OM, and FE-SEM. Corrosion behavior was investigated using a potentiostat(EG&G PARSTAT 2273), and electrochemical impedance spectroscopy was performed (10 mHz to 100 kHz) in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The microstructures of the Ti-30(Ta,Nb) alloys had a needle-like appearance. The $R_a$ of polished Ti-30Ta and Ti-30Nb alloys was lower than that of the sandblasted Ti alloy. Cultured cells displayed round shapes. For polished alloy samples, cells were well-cultured on all surfaces compared to sandblasted alloy samples. In sandblasted and cell-cultured Ti-30(Nb,Ta) alloy, the pitting potential decreased and passive current density increased as $R_a$ increased. Anodic polarization curves of cell-cultured Ti alloys showed unstable behavior in the passive region compared to non-cell-cultured alloys. From impedance tests of sandblasted and cell-cultured alloys, the polarization resistance decreased as $R_a$ increased, whereas, $R_a$ for cell-cultured Ti alloys increased compared to non-cell-cultured Ti alloys.

Determination of Mercury at Electrodes Modified with Poly-$[Ru(v-bpy)_3]^{2+}$ Incorporating Amino Acids (몇 가지 아미노산으로 변성한 $[Ru(v-bpy)_3]^{2+}$ 고분자 피막 전극을 이용한 수은의 정량)

  • Cha, Seong Keuk
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.8
    • /
    • pp.542-548
    • /
    • 1996
  • Electrodes modified with threonine, methionine and serine as ligands, which are incorporated by ion exchange into a polycationic film of electropolymerized $[Ru(v-bpy)_3]^{2+}$, have been employed in the determination of mercury in solution. The redox response of the surface-immobilized mercury/ligand complex was used as the analytical signal. When the polymeric film was electropolymerized, the supporting electrolytes were TBAP and $KPF_6$ to compare the morphology and anodic stripping of resulted polymer electrodes. At the case of the latter, the film had high porosity to give an easy incorporation of dopant anions into polymeric film matrix and a high sensitivity in determination of mercury ion. Especially, this polymer modified electrode exhibited possibility of multiple use in mercury determination over ten times. In all cases, calibration curves which were plotted by log of the surface coverage-normalized redox response vs. log[Hg] exhibited an excellent correlation (r=0.99) for mercury concentrations ranging from 1.0{\times}10^{-8}{\sim}1.0{\times}10^{-2}M$. At these curves relative standard deviation was 5∼8% and saturation response was not observed at high concentration region. Serine of the employed ligands had the best sensitivity in analytical application, which had greater stability constant in forming a complex with mercury than others as $pK_{Hg}=8.54$. The formation constants of threonine and methionine were respectively 7.04 and 7.80.

  • PDF

Influence of the nitrogen gas addition in the Ar shielding gas on the erosion-corrosion of tube-to-tube sheet welds of hyper duplex stainless steel (질소 보호 가스 첨가가 하이퍼 듀플렉스 스테인리스 밀봉용접재의 마모부식 저항성에 미치는 영향)

  • Kim, Hye-Jin;Jeon, Soon-Hyeok;Kim, Soon-Tae;Lee, In-Sung;Park, Yong-Soo
    • Corrosion Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.70-80
    • /
    • 2014
  • Duplex stainless steels with nearly equal fraction of the ferrite(${\alpha}$) phase and austenite(${\gamma}$) phase have been increasingly used for various applications such as power plants, desalination facilities due to their high resistance to corrosion, good weldability, and excellent mechanical properties. Hyper duplex stainless steel (HDSS) is defined as the future duplex stainless steel with a pitting resistance equivalent (PRE=wt.%Cr+3.3(wt.%Mo+0.5wt.%W)+30wt.%N) of above 50. However, when HDSS is welded with gas tungsten arc (GTA), incorporation of nitrogen in the Ar shielding gas are very important because the volume fraction of ${\alpha}$-phase and ${\gamma}$-phase is changed and harmful secondary phases can be formed in the welded zone. In other words, the balance of corrosion resistance between two phases and reduction of $Cr_2N$ are the key points of this study. The primary results of this study are as follows. The addition of $N_2$ to the Ar shielding gas provides phase balance under weld-cooling conditions and increases the transformation temperature of the ${\alpha}$-phase to ${\gamma}$-phase, increasing the fraction of ${\gamma}$-phase as well as decreasing the precipitation of $Cr_2N$. In the anodic polarization test, the addition of nitrogen gas in the Ar shielding gas improved values of the electrochemical parameters, compared to the Pure Ar. Also, in the erosion-corrosion test, the HDSS welded with shielding gas containing $N_2$ decreased the weight loss, compared to HDSS welded with the Ar pure gas. This result showed the resistance of erosion-corrosion was increased due to increasing the fraction of ${\gamma}$-phase and the stability of passive film according to the addition $N_2$ gas to the Ar shielding gas. As a result, the addition of nitrogen gas to the shielding gas improved the resistance of erosion-corrosion.

Electrochemical and Optical Studies on the Passivation of Nickel (니켈의 부동화에 관한 전기화학적 및 광학적 연구)

  • Dong Jin Kim;Woon-Kie Paik
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.6
    • /
    • pp.369-377
    • /
    • 1982
  • The technique of combined-measurement of reflectance and ellipsometric parameters was used for studying the anodic film formed on nickel surface in basic solutions. An ellipsometer was automated for transient measurements by way of modulating the plane-polarized light with the Faraday effect. Surface film was formed electrochemically by applying a potential step from the reduction potential range to the passivation range on a polished, high-purity, polycrystalline nickel specimen. From that instant, the changes in the reflectance(r) and the ellipsometric parameters(${\Delta},{\Psi}$) of the surface film were recorded by the automatic ellipsometer. Three exact simultaneous equations including these optical signals, ${\Delta},{\Psi}$ and r were solved numerically with a computer in order to determine the optical properties, n, k, and the thickness, ${\tau}$, of the surface film. From the computed results which showed dependence on pH and time, it was found that passivation of nickel can be effectively attained by surface film thinner than $15{\AA}$ and this passivation film has a small optical absorption coefficient. It seemed that a high pH environment enhances the rate of passivation and is favorable for a denser structure of the surface film. The experimental evidence is in accordance with the hypothesis that the composition of the passive film can be approximated by $Ni(OH)_2$ in the early stage of passivation and that as time passes the composition changes partially toward that of NiO through dehydration.

  • PDF

The Influence of Current Flow on OH Radical Generation in a Photocatalytic Reactor of TiO2 Nanotube Plates (전류흐름에 따른 TiO2 nanotube 광촉매의 OH radical 생성량 평가)

  • Kim, Da-Eun;Lee, Yong-Ho;Kim, Dae-Won;Pak, Dae-Won
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.349-356
    • /
    • 2017
  • OH radical generation is one of the common method to evaluate photocatalytic activity. In many of previous studies, only the UV(Ultraviolet) light was applied to test photocatalytic ability of $TiO_2$ nanotubes by studying probe compound(4-Chlorobenzoic acid) concentration change in solution. Also, $TiO_2$ nanotubes were found to show some electrochemical characteristics when the flow of electric current was applied. In this study, the flow of electric current and UV light were applied at the same time to determine whether electrochemical characteristics of $TiO_2$ nanotube plate can give synergetic effect on the photocatalytic activity. $TiO_2$ nanotube was grown on Ti by anodic oxidation to create $TiO_2$ nanotube plate which can be used as a photocatalyst and a electrode that can undergo AOP(Advanced Oxidation Process) for water treatment. Probe compound solution was prepared using 4-chlorobenzoic acid and $H_2O$ as a solvent. NaCl was added to give conductivity to work as electrolyte. As a result, enough level of electric current flow was found to give synergetic photocatalytic effect which can be used for efficient AOP water treatment method.

Effect on Corrosion Characteristics of SS 400 Steel by Alkali Water pH from Electrolysis of City Water (수돗물의 전기분해에 의해서 생성된 알카리수의 pH가 SS 400강의 부식특성에 미치는 영향)

  • Moon, Kyung-Man;Ryoo, Hae-Jeon;Kim, Yun-Hae;Jeong, Jae-Hyun;Baek, Tae-Sil
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.248-255
    • /
    • 2017
  • Many rivers and seas have been affected by environmental contamination. Therefore, city water supplies often require a high-degree purification treatment to provide safe drinking water. However, in order to achieve a high-degree purification treatment, a large amount of chlorine has to be added to sterilize city drinking water. The added chlorine reacts chemically with water and forms hypochlorous and chlorine ions. The hypochlorous ionizes with hypochlorous ions and hydrogen ions. As a result, the city water contains a large amount of chlorine ion. As such, when city water is used with domestic boilers, many kinds of heat exchangers, and the engines of vehicle and ships, there are often corrosion problems. In this study, alkali water was electrochemically made by electrolysis of city water, and corrosion properties between alkali and city water were investigated with an electrochemical method. Most of the chlorine ions are thought to not be contained in the alkali water because the alkali water is created in the cathodic chamber with an electrolysis process. In other words, the chlorine ion can be mostly removed by its migration from a cathodic chamber to an anodic chamber. Moreover, the alkali water also contains a large amount of hydroxide ion. The alkali water indicated relatively good corrosion resistance compared to the city water and the city water exhibited a local corrosion pattern due to the chlorine ion created by a high-degree purification treatment. In contrast, the alkali water showed a general corrosion pattern. Consequently, alkali water can be used with cooling water to inhibit local corrosion by chlorine ions in domestic boilers, various heat exchangers and the engine of ships and for structural steel in a marine structure.

A Study on Poisoning of the Reforming Catalysts on the Position of Anode in the Direct Internal Reforming Molten Carbonate Fuel Cell (직접 내부개질형 용융탄산염 연료전지의 음극판 위치에 따른 개질 촉매 피독에 관한 연구)

  • Wee, Jung Ho;Chun, Hai Soo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.652-659
    • /
    • 1999
  • The trend of poisoning of reforming catalyst along with the position of anodic catalyst bed was studied. Keeping the conditions that steam to carbon ratio was 2.5, operating voltage was 0.75 V, current density was $140mA/cm^2$, the unit cell was operated during 24 hrs at a steady state. And then the cell was stopped, the catalysts packed in the position of inlet, middle and outlet were sampled individually and then the amount of carbon, Li and K poisoned were analysed. After 100 hrs operated, the catalysts at the same positions were analysed at the same manner. The result of this experiment was as followings. After 24 hrs operated, the poisoning amounts of Li and K in the catalyst were 0.27 wt% at inlet, 0.23 wt% at middle and the highest value 1.59 wt% at outlet. After 100 hrs, the amount of poisoning is the highest in the catalyst packed at the inlet of unit cell. The performance simulation of unit cell explained these trends of poisoning catalysts. The simulation told that the catalyst in the region of the inlet of unit cell treated the 90% of initial methane flow rate and the highest electrochemical reaction happened in this region. So the catalysts of this region were the most poisoned with carbon, Li and K and also the rate of poisoning is faster than that of the catalyst at other regions. The temperature at the region of outlet of unit cell was $30^{\circ}C$ higher than that of other regions, so more Li, and K vaporized than at other regions and little reforming reaction at this region made the catalysts poisoning rate low.

  • PDF