• Title/Summary/Keyword: Anode-supported solid oxide fuel cell

Search Result 83, Processing Time 0.027 seconds

Effect of Interconnect Structure on the Cell Performance in Anode-supported Tubular SOFC Using Three-dimensional Simulation (3차원 수치모사를 통한 연료극 지지식 관형 고체산화물 연료전지의 전지 성능에 대한 연결재 구조 효과)

  • Hwang, Ji-Won;Lee, Jeong-Yong;Jo, Dong-Hyun;Jung, Hyun-Wook;Kim, Sung-Hyun
    • Clean Technology
    • /
    • v.16 no.4
    • /
    • pp.297-303
    • /
    • 2010
  • Effect of interconnect structure on the cell performance in anode-supported tubular solid oxide fuel cell (SOFC) has been investigated in this study, employing the Fluent CFD solver. For the robust and reliable theoretical analysis corroborating experimental results, it is of great importance to elucidate the role of interconnect which is electrically connected with electrodes on the cell characteristics. From the fact that the thin interconnect provides the enhanced cell performance, it is revealed that the interconnect thickness is a key parameter that is able to effectively control the ohmic resistance. Under the constant thickness condition, the cell performance does not considerably change with the variation of interconnect width. This is because the current passage along with circumferential direction is not effectively altered by the change of interconnect width in tubular SOFC system.

Development of Cobalt-free $La_xSr_{4-x}Fe_6O_{13}$ ($0{\leq}x{\leq}2$) Intergrowth Cathode Material for Solid Oxide Fuel Cells

  • Lee, Seung-Jun;Yong, Seok-Min;Kim, Dong-Seok;Kim, Do-Gyeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.45.1-45.1
    • /
    • 2011
  • Cobalt-free $La_xSr_{4-x}Fe_6O_{13}$ ($0{\leq}x{\leq}2$) oxide have been synthesized and investigated as a potential cathode material for solid oxide fuel cells (SOFCs). $Sr_4Fe_6O_{13}$ consists of alternating perovskite layers ($Sr_4Fe_2O_8$) containing iron cations in octahedral oxygen coordination and $Fe_4O_5$ layers where iron cations have 5-fold coordination of two types-square pyramids and trigonal bipyramids. Our preliminary electrochemical testes of pristine $Sr_4Fe_6O_{13}$ show a rather high area specific resistance ($0.47{\Omega}cm^2$ at $700^{\circ}C$) for ~20 ${\mu}m$ thick layers with CGO electrolyte. The electrochemical performances are improved by La addition up to x=1 ($La_1Sr_3Fe_6O_{13}$, $0.06{\Omega}cm^2$ at $700^{\circ}C$). In addition, thermal expansion coefficient (TEC) values of $La_1Sr_3Fe_6O_{13}$ specimen demonstrated $15.1{\times}10^{-6}\;^{\circ}C^{-1}$ in the range of 25-900$^{\circ}C$, which provides good thermal expansion compatibility with the CGO electrolyte. An electrolyte supported (300-${\mu}m$-thick) single-cell configuration of $La_1Sr_3Fe_6O_{13}$/CGO/Ni-CGO delivered a maximum power density of 584 $mWcm^{-2}$ at $700^{\circ}C$. In addition, an anode supported single cell by YSZ electrolyte (10-${\mu}m$-thick) with a porous CGO interlayer between the cathode and the electrolyte to avoid undesired interfacial reactions exhibited 1,517 $mWcm^{-2}$ at $800^{\circ}C$. The unique composition of $La_1Sr_3Fe_6O_{13}$ with low thermal expansion coefficient and higher electrochemical properties could be a good cathode candidate for intermediate temperature SOFCs with CGO and YSZ electrolyte.

  • PDF

Electrochemical Characteristics of Anode-supported Solid Oxide Fuel Cells (연료극 지지형 고체산화물 연료전지의 전기화학적 특성)

  • Yoon Sung Pil;Han Jonghee;Nam Suk Woo;Lim Tae-Hoon;Hong Seong-Ahn;Hyun Sang-Hoon;Yoo Young-Sung
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.2
    • /
    • pp.58-64
    • /
    • 2001
  • YSZ ($8mol\%$ yttria-stabilized zirconia)-modified LSM $(La_{0.85}Sr_{0.15}MnO_3)$ composite cathodes were fabricated by formation of YSZ film on triple phase boundary (TPB) of LSM/YSZ/gas. The YSZ coating film greatly enlarged electrochemical reaction sites from the increase of additional TPB. The composite cathode was formed on thin YSZ electrolyte (about 30 Um thickness) supported on an anode and then I-V characterization and AC impedance analyses were performed at temperature between $700^{\circ}C\;and\;800^{\circ}C$. As results of the impedance analysis on the cell at $800^{\circ}C$ with humidified hydrogen as the fuel and air as the oxidant, R1 around the frequency of 1000 Hz represents the anode Polarization. R2 around the frequency of 100Hz indicates the cathode polarization, and R3 below the frequency of 10 Hz is the resistance of gas phase diffusion through the anode. The cell with the composite cathode produced power density of $0.55\;W/cm^2\;and\;1W/cm^2$ at air and oxygen atmosphere, respectively. The I-V curve could be divided into two parts showing distinctive behavior. At low current density region (part I) the performance decreased steeply and at high current density region (part II) the performance decreased gradually. At the part I the performance decrease was especially resulted from the large cathode polarization, while at the part H the performance decrease related to the electrolyte polarization.

Fabrication of planar anode-supported SOFC by Tape casting methode (테입캐스팅법을 이용한 평판형 지지체식 연료전지 제조)

  • 유승호;김종희;손희정;송락현;정두환;백동현;신동열
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.241-241
    • /
    • 2003
  • 고체산화물 연료전지(Solid oxide fuel cell : SOFC)는 연료기체가 소유하고 있는 화학에너지를 전기화학반응에 의해 직접 전기에너지로 변화시키는 에너지 변환 장치이다. 고체산화물 연료전지의 특성은 인산형, 용융탄산염형 및 고분자연료전지 둥 다른 연료전지에 비해 효율이 높고 공해가 적으며, 연료개질기가 필요 없고 복합발전이 가능하다. 그러나 작동온도가 고온(100$0^{\circ}C$)이어서 연결재 및 전지의 구성요소가 고가이고 전류집전 및 밀봉 둥 문제점을 가지고 있다. 전극 지지체식 연료전지의 개발은 얇고 치밀한 전해질 제조를 가능하게 하여 낮은 저항을 가지기 때문에 저온에서 작동을 용이하게 하여 고온작동시의 문제점을 해결하기 위한 방안으로 박막제조공정에 대한 연구가 많이 이루어지고 있다. 또한 전지성능을 향상시키기 위해 전기화학적 반응면적과 가스 확산층을 넓게 하기 위한 기공률이 높고 전기전도도가 우수한 지지체 제작에도 많이 연구가 이루어지고 있다.

  • PDF

Improvement of Open Circuit Voltage (OCV) depending on Thickness of GDC Electrolyte of LT-SOFCs (저온형 SOFC용 GDC 전해질 두께에 따른 Open Circuit Voltage 향상)

  • Ko, Hyun-Jun;Lee, Jong-Jin;Hyun, Sang-Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.195-198
    • /
    • 2010
  • It has been considered to apply GDC ($Gd_{0.1}Ce_{0.9}O_{1-X}$) for low-temperature SOFC electrolytes because it has higher ionic conductivity than YSZ at low temperature. However, open circuit voltage with using GDC ($Gd_{0.1}Ce_{0.9}O_{1-X}$) electrolyte in SOFCs, becomes lower than using YSZ (8 mol% Yttria stabilized Zirconia) electrolyte because GDC has electronic conductivity. In this work, the effect of changing GDC electrolyte thickness on the open circuit voltage has been investigated. Ni-GDC anode-supported unit cells were fabricated as follows. Mixed NiO-GDC powders were pressed and pre-sintered at $1200^{\circ}C$. And then, GDC electrolyte material was dip-coated on the anode and sintered at $1400^{\circ}C$. Finally the LSCF-GDC cathode material was screen-printed on the electrolyte and sintered at $1000^{\circ}C$. Electrolyte thickness was controlled by the number of dip-coating times. Open circuit voltage was measured depending on electrolyte thickness at $650^{\circ}C$ and found that the thicker GDC electrolyte was, the better OCV was.

Investigation of a Thermal Stress for the Unit Cell of a Solid Oxide Fuel Cell (고체산화물 연료전지 단위셀의 열응력에 관한 연구)

  • Kim, Young-Jin;Park, Sang-Kyun;Roh, Gill-Tae;Kim, Mann-Eung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.414-420
    • /
    • 2011
  • Thermal stress analysis of a planar anode-supported SOFC considering electrochemical reactions has been performed under operating conditions where average current density varies from 0 to 2000 $A/m^2$. For the case of the 2000 $A/m^2$ operating condition, Structural stress analysis based on the temperature distributions obtained from the CFD analysis of the unit cell has also been done. From this one way Fluid-Structure Interaction(FSI) analysis, Maximum Von-Mises stress under negligible temperature gradient fields occurs when cell components are perfectly bonded. The maximum stress of the electrolyte, cathode and anode in a unit cell SOFC is 262.58MPa, 28.55MPa and 15.1MPa respectively. The maximum thermal stress is critically dependent on static friction coefficient.

BaCeO3-BaZrO3 Solid Solution (BCZY) as a High Performance Electrolyte of Protonic Ceramic Fuel Cells (PCFCs) (BaCeO3-BaZrO3 고용체(BCZY) 기반 프로톤 세라믹 연료전지(PCFC)용 고성능 전해질 개발)

  • An, Hyegsoon;Shin, Dongwook;Choi, Sung Min;Lee, Jong-Ho;Son, Ji-Won;Kim, Byung-Kook;Je, Hae June;Lee, Hae-Weon;Yoon, Kyung Joong
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.271-277
    • /
    • 2014
  • To overcome the limitations of the solid oxide fuel cells (SOFCs) due to the high temperature operation, there has been increasing interest in proton conducting fuel cells (PCFCs) for reduction of the operating temperature to the intermediate temperature range. In present work, the perovskite $BaCe_{0.85-x}Zr_xY_{0.15}O_{3-\delta}$ (BCZY, x = 0.1, 0.3, 0.5, and 0.7) were synthesized via solid state reaction (SSR) and adopted as an electrolyte materials for PCFCs. Powder characteristics were examined using X-ray diffraction (XRD), thermogravimetric analysis (TGA) and Brunauer, Emmett and Teller (BET) surface area analysis. Single phase BCZY were obtained in all compositions, and chemical stability was improved with increasing Zr content. Anode-supported cell with $Ni-BaCe_{0.55}Z_{0.3}Y_{0.15}O_{3-\delta}$ (BCZY3) anode, BCZY3 electrolyte and BCZY3-$Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-\delta}$ (BSCF) composite cathode was fabricated and electrochemically characterized. Open-circuit voltage (OCV) was 1.05 V, and peak power density of 370 ($mW/cm^2$) was achieved at $650^{\circ}C$.

Preparation of $Ce_{0.8}Sm_{0.2}O_{x}$ Electrolyte Thin Film for Solid Oxide Fuel Cells by Electrophoretic Deposition (전기영동법을 이용한 고체산화물 연료전지용 $Ce_{0.8}Sm_{0.2}O_{x}$ 전해질 박막 제조)

  • Kim, Dong-Gyu;Song, Min-Wu;Lee, Kyeong-Seop;Kim, Yoen-Su;Kim, Young-Soon;Shin, Hyung-Shik
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.781-785
    • /
    • 2011
  • In this work, a nano-sized samaria-doped ceria(SDC) was prepared by a urea-based hydrothermal method and characterized by XRD, FESEM and TEM. It was observed that the increase in synthesis time and temperature gave rise to crystallity and particles size. Moreover, the synthesised powders had a excellent ion-conductivity(0.1 S/cm at 600~$800^{\circ}C$) which is suitable for electrolyte of intermediate temperature-solid oxide fuel cell(IT-SOFC). Subsequently for use as electrolyte for anode-supported IT-SOFC, we tried to deposit the SDC powder on a porous NiO-SDC substrate by electrophoretic deposition(EPD) method. From the FESEM observation, a compact

Microstructure and Electrical Properties of Single Cells Based on a Ni-YSZ Cermet Anode for IT-SOFCs (중.저온헝 SOFC를 위한 Ni-YSZ 연료극 지지체형 단전지 미세구조와 전기적 특성)

  • Park, Jae-Keun;Yang, Su-Yong;Lee, Tae-Hee;Oh, Je-Myung;Yoo, Young-Sung;Park, Jin-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.823-828
    • /
    • 2006
  • One of the main issues of Solid Oxide Fuel Cells (SOFCs) is to reduce the operating temperature to $750^{\circ}C$ or less. It has advantages of improving the life of component parts and the long-term stability of a system, so the production cost could be decreased. In order to achieve that, the ohmic and polarization loss of a single cell should be minimized first. This paper presents.to fabricate anode-supported single cells with controlling microstructure as a function of particle size and volume of graphite and NiO-YSZ weight ratio. By means of optimizing the manufactural condition through microstructure analysis and performance evaluation, the single cell which had NiO-YSZ=6:4, graphite volume of 24% and graphite size of $75{\mu}m$ as the anode composition showed a distinguished power density of $510mW/cm^2$ at $650^{\circ}C$ and $810mW/cm^2$ at $700^{\circ}C$, respectively.

Synthesis characterization of a high conductivity LSCF cathode materials and electrochemical studies for IT-SOFC (중.저온 고체산화물 연료전지용 고전도성 공기극 소재 합성 및 전기화학적 특성 평가)

  • Kim, Hyoshin;Lee, Jongho;Kim, Ho-Sung;Lee, Yunsung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.139-139
    • /
    • 2010
  • LSM is widely used as a cathode material in SOFC, because of its high electrochemical activity, good stability and compatibility with YSZ electrolyte at high temperature. However, LSM in traditional cathode materials will not generate a satisfactory performance at intermediate temperature. In order to reduce the polarization resistance of cell with the operating temperature of SOFC system, the cathode material of LSCF is one of the most suitable electrode materials because of its high mixed ionic and electronic conductivity. In this report, cathode material, $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ powder for intermediate temperature SOFC was synthesized by Pechini method using the starting materials such as nitrate of La, Sr, Co and Fe including ethylene glycol, etc. As a result, the synthesized powder that calcined above $700^{\circ}C$ exhibits successfully perovskite structure, indicating phase-pure of LSCF. Moreover, the particle size, surface area, crystal structure and morphology of the synthesized oxide powders were characterized by SEM, XRD, and BET, etc. In order to evaluate the electrochemical performance for the synthesized powder, slury mixture using the synthesized cathode material was coated by screen-printing process on the anode-supported electrolyte which was prepared by a tape casting method and co-sintering. Finally, electrochemical studies of the SOFC unit cell, including measurements such as power density and impedance, were performed.

  • PDF