• Title/Summary/Keyword: Anode-supported cell

Search Result 120, Processing Time 0.023 seconds

Development of Anode-supported Planar SOFC with Large Area by tape Casting Method (테입캐스팅을 이용한 대면적 (100 cm2) 연료극 지지체식 평판형 고체산화물 연료전지의 개발)

  • Yu, Seung-Ho;Song, Keun-Suk;Song, Hee-Jung;Kim, Jong-Hee;Song, Rak-Hyun;Jung, Doo-Hwan;Peck, Dong-Hyun;Shin, Dong-Ryul
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.1
    • /
    • pp.41-47
    • /
    • 2003
  • For the development of low temperature anode-supported planar solid oxide fuel cell, the planar anode supports with the thickness of 0.8 to 1 mm and the area of 25, 100 and $150\;cm^2$ were fabricated by the tape casting method. The strength, porosity, gas permeability and electrical conductivity of the planar anode support were measured. The porosity of anode supports sintered at $1400^{\circ}C$ and then reduced in$H_2$ atmosphere was increased from $45.8\%\;to\;53.9\%$. The electrical conductivity of the anode support was $900 S/cm\;at\; 850^{\circ}C$ and its gas permeability was 6l/min at 1 atm in air atmosphere. The electrolyte layer and cathode layer were fabricated by slurry dip coating method and then had examined the thickness of $10{\mu}m$ and the gas permeability of 2.5 ml/min at 3 atm in air atmosphere. As preliminary experiment, cathode multi-layered structure consists of LSM-YSZ/LSM/LSCF. At single cell test using the electrolyte layer with thickness of 20 to $30{\mu}m$, we achieved $300\;mA/cm^2$ and 0.6V at $750^{\circ}C$

Single cell property and numerical analysis of metal-supported solid oxide fuel cell (금속지지체형 고체산화물 연료전지의 단전지 특성 및 전산해석)

  • Lee, Chang-Bo;Bae, Joong-Myeon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2222-2227
    • /
    • 2007
  • Newly structured metal-supported solid oxide fuel cell was fabricated and characterized by impedance analysis and galvanodynamic experiment. Using a cermet adhesive, thin ceramic layer composed of anode(Ni/YSZ) and electrolyte(YSZ) was joined with STS430 metal support of which flow channel was fabricated. $La_{0.8}Sr_{0.2}Co_{0.4}Mn_{0.6}O_3$ perovskite oxide was used as cathode material. Single cell performance was increased and saturated at operating time to 300hours at 800$^{\circ}C$ because of cathode sintering effect. The sintering effect was reinvestigated by half cell test and exchange current density was measured as 0.005A/$cm^2$. Maximum power density of the cell was 0.09W/$cm^2$ at 800$^{\circ}C$. Numerical analysis was carried out to classify main factors influencing the single cell performances. Compared to experimental IV curve, simulated curve based on experimental parameters such as exchange current density was in good agreement.

  • PDF

Characteristics of NaOH-Activated Carbon Nanofiber as a Support of the Anode Catalyst for Direct Methanol Fuel Cell (NaOH 활성화된 탄소나노섬유의 직접 메탄올 연료전지용 연료극 촉매의 담지체로서의 특성 고찰)

  • Shin, Jung-Hee;Lim, Seong-Yop;Kim, Sang-Kyung;Peck, Dong-Hyun;Lee, Bung-Rok;Jung, Doo-Hwan
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.769-774
    • /
    • 2011
  • Porous carbon nanofibers(CNF) were synthesized via NaOH activation at 700~$900^{\circ}C$, and the porous CNF-supported PtRu catalysts were evaluated for the anode in direct methanol fuel cells. The change of surface characteristics by NaOH activation was examined by analyses of the specific surface area and pore size distribution. The morphological and structural modification was investigated under scanning electron microscopy. The activity of catalysts supported on porous CNFs was examined by cyclic voltammograms and single cell tests. The pore formation on CNF by the NaOH activation was discussed, concerning the catalyst activity, when they were applied as catalyst supports.

Fabrication and Performance Evaluation of Tubular Solid Oxide Fuel Cells Stack (원통형 고체산화물 연료전지 스택 제작 및 성능평가)

  • Kim, Wanje;Lee, Seungbok;Song, Rakhyun;Park, Seokjoo;Lim, Takhyoung;Lee, Jongwon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.6
    • /
    • pp.467-471
    • /
    • 2013
  • In present work, optimized the manufacturing process of anode-supported tubular SOFCs cell and stack were studied. For this purpose, we first developed a high performance tubular SOFC cell, and then made electrical connection in series to get high voltage. The gas sealing was established by attaching single cells to alumina jig with ceramic bond. Through these process, we can obtain such high OVP as around 15V, which means that the electrical connection and gas sealing were optimized. Finally we developed a new tubular SOFC stack which shows a maximum power of 65W @ $800^{\circ}C$.

Comparison of the Power Generating Characteristics of KIST- and FZ-Julich SOFCs (KIST와 FZ-Julich SOFC간의 출력성능 비교)

  • Jung, Hwa-Young;Lee, Sang-Cheol;Tietz, Frank;Kim, Hae-Ryoung;Lee, Hae-Weon;Lee, Jong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.12
    • /
    • pp.703-709
    • /
    • 2007
  • We evaluate and compare the power generating characteristics of the anode supported SOFCs which have been fabricated from KIST and FZ-Julich in Germany. The performance and electrochemical property of each unit cell was characterized at the temperature range of $650-850^{\circ}C$ under same operating conditions and its microstructural property was thoroughly investigated via SEM after the performance test. According to the investigation, KIST- and FZJ SOFC showed different power generating characteristics in their temperature dependances due to their different design of electrode microstructure, especially the cathode microstructure. FZJ SOFC showed better performance at high temperature while showed lower performance at lower temperature. From the investigation about the correlation between microstructure and electrochemical property, we found that the superior performance of FZJ SOFC at high temperature was mainly due to its lower cathodic polarization resistance whereas better performance of KIST SOFC at lower temperature was mostly attributed to the lower ohmic resistance.

Effect of Granulation and Compaction Methods on the Microstructure and Its Related Properties of SOFC Anode (과립형성 및 성형방법에 따른 SOFC 음극의 미세구조 및 특성)

  • Heo, Jang-Won;Lee, Jong-Ho;Hwang, Jin-Ha;Moon, Joo-Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.1
    • /
    • pp.53-58
    • /
    • 2003
  • It is well known that the anode substrate of anode-supported type SOFC should have high electrical conductivity and high gas permeability to minimize the polarization loss of the cell performance during operation. In this study, we made anode substrates of SOFC with two different methods, which gave different anode microstructures, especially different pore structures with each other. We performed electrical and microstructural characterization of Ni/YSZ cermet anode via extensive measurements of its electrical conductivity and gas permeability combined with adequate image analysis based on quantitative stereological theory

Characterization of the LSGM-Based Electrolyte-Supported SOFCs (LSGM계 전해질 지지형 고체산화물 연료전지의 특성평가)

  • Song, Eun-Hwa;Kim, Kwang-Nyeon;Chung, Tai-Joo;Son, Ji-Won;Kim, Joo-Sun;Lee, Hae-Weon;Kim, Byung-Kook;Lee, Jong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.5 s.288
    • /
    • pp.270-276
    • /
    • 2006
  • LSGM(($La_xSr_{1-x})(Ga_yMg_{1-y})O_3$) electrolyte is known to show very serious interfacial reaction with other unit cell components, especially with an anode. Such an interfacial reaction induced the phase instability of constituent component and deterioration of the unit cell performance, which become the most challenging issues in LSGM-based SOFCs. In this study, we fabricated LSGM($La_{0.8}Sr_{0.2}Ga_{0.83}Mg_{0.17}O_x$) electrolyte supported-type cell in order to avoid such interfacial problem by lowering the heat-treatment temperature of the electrode fabrication. According to the microstructural and phase analysis, there was no serious interfacial reaction at both electrolyte/anode and electrolyte/cathode interfaces. Moreover, from the electrochemical characterization of the unit cell performance, there was no distinct deterioration of the open cell voltage as well as an internal cell resistance. These results demonstrate the most critical point to be concerned in LSGM-based SOFC is either to find a proper electrode material which will not give any interfacial reaction with LSGM electrolyte or to properly adjust the processing variables for unit cell fabrication, to reduce the interfacial reaction.

Effect of Interconnect Structure on the Cell Performance in Anode-supported Tubular SOFC Using Three-dimensional Simulation (3차원 수치모사를 통한 연료극 지지식 관형 고체산화물 연료전지의 전지 성능에 대한 연결재 구조 효과)

  • Hwang, Ji-Won;Lee, Jeong-Yong;Jo, Dong-Hyun;Jung, Hyun-Wook;Kim, Sung-Hyun
    • Clean Technology
    • /
    • v.16 no.4
    • /
    • pp.297-303
    • /
    • 2010
  • Effect of interconnect structure on the cell performance in anode-supported tubular solid oxide fuel cell (SOFC) has been investigated in this study, employing the Fluent CFD solver. For the robust and reliable theoretical analysis corroborating experimental results, it is of great importance to elucidate the role of interconnect which is electrically connected with electrodes on the cell characteristics. From the fact that the thin interconnect provides the enhanced cell performance, it is revealed that the interconnect thickness is a key parameter that is able to effectively control the ohmic resistance. Under the constant thickness condition, the cell performance does not considerably change with the variation of interconnect width. This is because the current passage along with circumferential direction is not effectively altered by the change of interconnect width in tubular SOFC system.