• Title/Summary/Keyword: Anode water

Search Result 288, Processing Time 0.028 seconds

Investigation on electrochemical performance of Al anode material for marine growth prevention system

  • Kim, Seong-Jong;Jang, Seok-Ki;Han, Min-Su;Lee, Seung-Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.8
    • /
    • pp.968-973
    • /
    • 2014
  • Aluminum anode of marine growth prevention system for ship is installed in seachest or sea water strainer. The Al anode is connected to a control panel that feeds a current to the anode. The dissolved ions produced by the anode are transferred in sea water, spreads through the sea water pipe system and creates a protective film in the pipelines. Thereby, corrosion in pipeline system significantly is reduced. In application on condition as a steel ship, the big accident can be caused by the corrosion. Accordingly, in this research, we evaluated influence of applied current and flow velocity on electrochemical characteristics of Al anode for marine growth prevention system (MGPS). Based on the results of the erosion-cavitation experiments, cavitation rate increased greatly until 120 min. of the experimental time and decreased a little at the point of 180 min. where pit grew and merging occurred but showed a tendency of steadily increasing consumption rates. Based on the results of the Tafel analysis, compared to static states, corrosion current densities show a rapidly increasing tendency when flow occurred.

Effect of Porous Flow Field on PEMFC Performance with Dead Ended Anode System (Dead ended anode 시스템에서 다공성 유로가 연료전지 성능에 미치는 영향)

  • Kim, Junseob;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.646-652
    • /
    • 2022
  • The dead-end anode (DEA) system is a method that closes the anode outlet and supplies fuel by pressure. The DEA method could improve fuel usage and power efficiency through system simplification. However, flooding occurs due to water and nitrogen back diffusion from the cathode to the anode during the DEA operation. Flooding is a cause of decreased fuel cell performance and electrode degradation. Therefore, tthe structure and components of polymer electrolyte membrane fuel cell (PEMFC) should be optimized to prevent anode flooding during DEA operation. In this study, the effect of a porous flow field with metal foam on fuel cell performance and fuel efficiency improvement was investigated in the DEA system. As a result, fuel cell performance and purge interval were improved by effective water management with a porous flow field at the cathode, and it was confirmed that cathode flow field structure affects water back-diffusion. On the other hand, the effect of the porous flow field at the anode on fuel cell performance was insignificant. Purge interval was affected by metal foam properties and shown stable performance with large cell size metal foam in the DEA system.

Performance Characteristics of a Polymer Electrolyte Fuel Cell with the Anodic Supply Mode (고분자 전해질 연료전지의 수소극 공급모드에 따른 성능특성)

  • Lee, Yong-Taek;Park, Cha-Sik;Heo, Jae-Hyeok;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.7 s.262
    • /
    • pp.588-595
    • /
    • 2007
  • The water transport inside a polymer electrolyte fuel cell (PEFC) varied according to the anodic supply mode. The performance characteristics of a PEFC which can be affected by the water transport were observed with the anodic supply mode. In the flow-through and recirculation mode the performance showed no reduction with time because the flow in the anode was not stagnated. In the dead-end mode, without any discharged gas, the water remains inside of the anode, which caused the reduction of the performance with the lapse of time. However, even in the dead-end mode, little reduction of the performance with time was shown when only the anode was humidified externally. It means that the back-diffusion was the major factor to the accumulation of water in the anode rather than external humidification.

Performance change according to the catalyst intrusion rate in the MEA for the PEM water electrolysis (고분자전해질 수전해용 MEA의 촉매침투도에 따른 성능변화)

  • Kim, Hong-Youl
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.254-256
    • /
    • 2009
  • The performances of proton exchange membrane (PEM) water electrolysis depend on many factors such as materials, geometries, fabrication methods, operating conditions, and so forth. The fabrication method is concerned, membrane electrode assemblies (MEA) are a most important part to show different performances by different fabrication methods. The performance change of PEM water electrolysis was experimentally measured according to the fabrication differences of the anode electrodes. One point of view is the catalyst intrusion rate to the anode gas diffusion layer (GDL), and the other point of view is the catalyst loading distribution in depth of the anode GDL. Results show that the performances of MEA with deep intrusion of the catalysts are better in the range of low current densities but worse at higher current densities. The catalyst loading distribution does not affect significantly to the performance of PEM water electrolyser.

  • PDF

Performance Change according to the Catalyst Intrusion Rate in the MEA for the PEM Water Electrolysis (고분자전해질 수전해용 MEA의 촉매침투도에 따른 성능변화)

  • Kim, Hong-Youl;Lee, Ji-Jung;Lee, Jae-Young;Lee, Hong-Ki
    • New & Renewable Energy
    • /
    • v.5 no.4
    • /
    • pp.75-78
    • /
    • 2009
  • The performances of proton exchange membrane (PEM) water electrolysis depend on many factors such as materials, geometries, fabrication methods, operating conditions, and so forth. The fabrication method is concerned, membrane electrode assemblies (MEA) are a most important part to show different performances by different fabrication methods. The performance change of PEM water electrolysis was experimentally measured according to the fabrication differences of the anode electrodes. One point of view is the catalyst intrusion rate to the anode gas diffusion layer (GDL), and the other point of view is the catalyst loading distribution in depth of the anode GDL. Results show that the performances of MEA with deep intrusion of the catalysts are better in the range of low current densities but worse at higher current densities. The catalyst loading distribution does not affect significantly to the performance of PEM water electrolyser.

  • PDF

A study on the developmenet of Anode Material for Molten Carbonate Fuel Celt - Cu-base electrode- (용융탄산염 연료전지의 양극 및 대체재료의 제작에 관한 연구 -Cu-base 전극에 대하여-)

  • 박재우;김용덕;황응림;김선진;강성군
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.4
    • /
    • pp.243-254
    • /
    • 1995
  • The fabrication process of Cu-base anode for replacing Ni-base anode of molten carbonate fuel cell was investigated. Electrochemical performance and thermal stability of Cu-base anode were also investigated. Green sheet was prepared by mixing Cu and Ni powder with 1.5wt% methylcellulose and 100wt% water. The pore-size distribution of the Cu-base anode sintered at $800^{\circ}C$ for 30min showed almost uniform pore-size ranging from 4 to 20$\mu\textrm{m}$ and it was considered suitable for MCFC anode. Cu-Ni anode containing between 35 to 50wt% Ni exhibited current density of 111mA/$\textrm{cm}^2$ at 100mV overpotential and it was almost the some value for pure Ni anode. The sintering resistance of Cu-Ni increased with an increase of Ni addition. It was considered that the increase of sintering resistance was due to the decrease of diffusion rate of Cu and Ni with increasing the addition of Ni in Cu-Ni alloy.

  • PDF

The Operating Condition and Flow Field Design Effect on the Anode Water Management of a Proton Exchange Membrane Fuel Cell (PEMFC) (운전조건 및 유로형상에 따른 고체고분자형 연료전지의 수소극에서의 수분관리)

  • Hong, In Kwon;Kim, Sunhoe
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.518-521
    • /
    • 2011
  • A PEMFC single cell with the active area of $25cm^2$ was used to verify the effect of water management in the anode. Water management is one of the most critical operating variables. In this paper the effect of operating condition change, such as anode humidification and temperature, was investigated under constant current density of $200mA/cm^2$ where possible anode flooding operating area. Also experiments to observe the effect of the anode and cathode stoichiometry change and flow field design on the water management were performed. The water management was effected by the stoichimetry change. The temperature and humidification change also affected the fuel cell performance.

A Study on environmental-friendly Cleaning for Si-wafers (환경친화적인 실리콘 웨이퍼 세정 연구)

  • Yoon, Hyoseob;Ryoo, Kunkul
    • Clean Technology
    • /
    • v.6 no.1
    • /
    • pp.79-84
    • /
    • 2000
  • In this study, to reduce the consumption of chemicals in cleaning processes, Si-wafers contaiminated with metallic impurities were cleaned with electrolyzed water(EW), which was generated by the electrolysis of a diluted electrolyte solution or ultra pure water(UPW). Electrolyzed water could be controlled for obtaining wide ranges of pH and ORP(oxidation-reduction potential). The pH and oxidation-reduction potential of anode water and cathode water were measured to be 4.7 and +1000mV, and 6.3 and -550mV, respectively. To analyze the amount of metallic impurities on Si-wafer surfaces, ICP-MS was introduced. Anode water was effective for Cu removal, while cathode water was more effective for Fe removal.

  • PDF

A Study on Si-wafer Cleaning by Electrolyzed Water (전리수를 이용한 실리콘 웨이퍼 세정)

  • Yun, Hyo-Seop;Ryu, Geun-Geol
    • Korean Journal of Materials Research
    • /
    • v.11 no.4
    • /
    • pp.251-257
    • /
    • 2001
  • A present semiconductor cleaning technology is based upon RCA cleaning, high temperature process which consumes vast chemicals and ultra Pure water(UPW). This technology gives rise to the many environmental issues, therefore some alternatives have been studied. In this study, intentionally contaminated Si wafers were cleaned using the electrolyzed water(EW). The EW was generated by an electrolysis equipment which was composed of anode. cathode, and toddle chambers. Oxidative water and reductive water were obtained in anode and cathode chambers, respectively. In case $NH_4$Cl electrolyte, the oxidation-reduction potential(ORP) and pH for anode water(AW) and cathode water(CW) were measured to be +1050mV and 4.7, and -750mV and 9.8, respectively. For cleaning metallic impurities, AW was confirmed to be more effective than that of CW, and the particle distribution after various particle removal processes was shown to be same distribution.

  • PDF

Turbidity Removal of Kaolin in an Electrocoagulation/Flotation Process Using a Mesh-type Aluminum Electrode (메시형 알루미늄 전극을 이용한 전기응집/부상 공정에서 Kaoline의 탁도 제거)

  • Zheng, Chang;Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.26 no.5
    • /
    • pp.563-572
    • /
    • 2017
  • The Electrocoagulation-Flotation (ECF) process has great potential in wastewater treatment. ECF technology is effective in the removal of colloidal particles, oil-water emulsion, organic pollutants such as microalgae, and heavy metals. Numerous studies have been conducted on ECF; however, many of them used a conventional plate-type aluminum anode. In this study, we determined the effect of changing operational parameters such as power supply time, applied current, NaCl concentration, and pH on the turbidity removal efficiency of kaoline. We also determined the effects of different electrolyte types (NaCl, $MgSO_4$, $CaCl_2$, $Na_2SO_4$, and tap water), as well as the differences caused by using a plate-type and mesh-type aluminum anode, on the turbidity removal efficiency. The results showed that the optimal values of ECF time, applied current, NaCl concentration, and pH were 5 min, 0.35 A, 0.4 g/L NaCl in distilled water, and pH 7, respectively. The results also revealed that the turbidity removal efficiency of kaoline in different electrolytes decreased in the following sequence, given the same conductivity: tap water > $CaCl_2$ > $MgSO_4$ > NaCl > $Na_2SO_4$. The turbidity removal efficiency of the mesh-type aluminum anode was significantly greater than the plate-type aluminum anode.