• 제목/요약/키워드: Anode arrangement

검색결과 6건 처리시간 0.019초

Numerical analysis results of the cathodic protection for the underground steel pipe by anode installation method

  • Jeong, Jin-A;Choo, Yeon-Gil;Jin, Chung-Kuk;Park, Kyeong-Wan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권10호
    • /
    • pp.1212-1216
    • /
    • 2014
  • This study aims to find out the best anode location for buried pipelines. Numerical simulation program known as CATPRO (Elsyca, Belgium) were used for confirming the best location of anodes and the effects of impressed current cathodic protection system. Applied conditions for numerical simulation were similar to on-site environmental conditions for optimal application of cathodic protection system. Used criterion of cathodic protection was NACE SP 0169, which describes that minimum requirement for cathodic protection is -850mV vs. CSE. Various layouts for anodes' installation were applied, which were distance between anodes, anode installation location, and applied current. The areas where cathodic protection potential was lower than -850mV vs. CSE was limited up to 50m from anode installation locations. It was founded numerical analysis obtain cost-effective and efficient cathodic protection methods before design and application the impressed cathodic protection system to on-site environment.

비균일자장들 속에서 전극배치에 따른 저기압 방전 특성 (s on the Arrangement of Electrodes in Non-Uniform Magnetic Fields)

  • 박덕규
    • 대한전기학회논문지
    • /
    • 제37권1호
    • /
    • pp.63-68
    • /
    • 1988
  • The V-I characteristics of low pressure discharges occurring between each of three kinds of anode and a fixed hot cathode in several bi-cusp magnetic fields are investigated. The results are different from those in non-magnetic fields as follows` First, both breakdown and maintaining potentials of low pressure discharges in the fields are rather depend on the arrangement of the directions of magnetic lines of force and the directions between two electrodes than on the distance between two electrodes or the size of the electrodes. Second, the maintaining potentials of the discharges in the fields are lower than those in the non-fields, and the electrical conductivity in the fields are better than those in the non-fields. Third, the breakdown potertials in the fields when the direction of magnetic lines of force is perpendicular with the direction of discharging path between two electrodes are higher than those when the two directions are parallel with each other. But the maintaining patentials in the fields are shown the contrary phenomena with before. This results are particularily conspicuous as the separatrix of the fields pass across the discharging path between two electrodes.

  • PDF

3D 복극충진전기분해를 이용한 원전 ETA에 의해 유발된 폐수 내 COD 및 T-N 제거 (Removal of COD and T-N caused by ETA from Nuclear Power Plant Wastewater using 3D Packed Bed Bipolar Electrode System)

  • 김한기;정주영;신자원;박주양
    • 상하수도학회지
    • /
    • 제26권3호
    • /
    • pp.409-421
    • /
    • 2012
  • Ethanolamine (ETA) is mainly used to prevent corrosion of pipe in secondary cooling system of nuclear power plant. Condensed ETA in wastewater could increase COD and T-N when it was emitted to natural water system. Compared to conventional treatments, electrochemical oxidation process using packed bed bipolar electrodes was adopted to treat COD and T-N. According to arrangement of feeder electrode, single packed bed bipolar electrode reactor and multi-paired packed bed bipolar reactor were developed and conventional zero-valent iron (ZVI) was selected as conducting bipolar electrode. Bipolar electrodes were coordinated three-dimensionally in the reactor. The experimental results showed that COD and T-N was little removed in unit system at different pH condition (pH 8 and 11) on 100V. However, in multi-paired system that applied 600V, COD was eliminated 80.85% (anode-cathode-anode, A-C-A) and 85.11% (cathode-anode-cathode, C-A-C), respectively. T-N was also removed 96.88% (A-C-A) and 90.63% (C-A-C), simultaneously. Current efficiency was estimated both single and multi-paired system. At unit bipolar packed bed reactor, current efficiency was almost zero, however in multi-paired system, current efficiency was 300~500% at A-C-A and 250~350% at C-A-C. Current efficiency was over 100% hence it was confirmed that this system is more effective than conventional electrochemical oxidation system.

열처리에 의해 제조된 강아지풀 기반 리튬 이온 이차전지용 탄소 음극재의 전기화학적 특성 (Electrochemical Characteristics of Setaria viridis-Based Carbon Anode Materials Prepared by Thermal Treatment for Lithium-Ion Secondary Batteries)

  • 김동기;임채훈;명성재;하나은;민충기;이영석
    • 공업화학
    • /
    • 제35권2호
    • /
    • pp.140-147
    • /
    • 2024
  • 바이오매스 활용을 높이기 위하여, 열처리 공정을 통해 강아지풀 기반 리튬 이온 이차 전지용 탄소음극재(SV-C)를 제조한 뒤 전기화학적 성능을 고찰하였다. 강아지풀의 열처리 온도가 750 ℃로 낮을 때 낮은 결정성과 높은 비표면적(126 m2/g)과 함께, 표면에 많이 존재하는 산소의 (-) 전하가 리튬을 끌어당김으로 인하여 비정전용량(1003.3 mAh/g, at 0.1 C)이 높지만, 용량 유지율은 61.0% (at 500 cycles and 1 C)로 낮아지는 것으로 여겨진다. 또한, 열처리온도가 1150 ℃로 증가하면 탄소층이 축합되어 배열이 우수해짐에 따라 구조 결함이 감소하여 기공이 크게 줄어 비표면적(32 m2/g)이 감소한 것으로 확인되었다. 또한, 음극재 표면결함이 감소하여 결정성이 높아지게 되면, 용량 유지율은 89.7% (at 500 cycles and 1 C)로 높지만, 결함 정도가 작아 활성점이 줄어들어 비정전용량이 471.7 mAh/g로 매우 낮은 것으로 여겨진다. 본 연구 범위에서, 열처리 온도에 따라 제조된 강아지풀 기반 탄소음극재의 경우, 비표면적에 비해 표면 산소 함량과 결정성 등이 음극재의 전기화학적 특성에 더 높은 신뢰도를 갖는 것으로 나타났다.

선체 부식에 의한 수중 전기장 신호 특성 모델링 기법 연구 (A Study on the Modelling Method of Underwater Electric Field Signature due to Ship's Corrosion)

  • 정현주;양창섭;전재진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.876-878
    • /
    • 2008
  • The galvanic corrosion of a vessel, or systems fitted to minimize the ship's corrosion such as ICCP(Impressed Current Cathodic Protection) system and sacrificial anodes, can lead to significant electrical current flow in the sea. The presence of vessel's current sources associated with corrosion will give rise to detectable electric field surrounding the vessel and can put it at risk from mine threats. For this reason, it is necessary to design corrosion protection systems so that they don't only prevent a hull corrosion but also minimize the electric field signature. In this paper, we describe theoretical backgrounds of underwater electric field signature due to corrosion and corrosion protection system on naval vessels and analysis results of the electric field according to ICCP anode arrangement.

  • PDF

다중압출 공정을 이용한 마이크로 채널 다중 원통형 고체산화물 연료전지의 in-situ 제조 (In-Situ Fabrication of Micro-channeled Multi Tubular Solid Oxide Fuel Cell using Multi-pass Extrusion Process)

  • 변기천;;김종희;이병택
    • 한국재료학회지
    • /
    • 제17권6호
    • /
    • pp.313-317
    • /
    • 2007
  • In-situ micro-channeled multi tubular solid oxide fuel cell(SOFC) was fabricated using multi-pass extrusion process with out side diameter of 2.7 mm and active length of 5 mm that contained 61 individual cells. Cell materials used in this work were NiO-YSZ (50 : 50 vol.%), 8 mol% yttria-stabilized zirconia(8YSZ), $La_{0.8}Sr_{0.2}MnO_3(LSM)$ as anode, electrolyte, and cathode, respectively. The arrangement of each electrode and electrolyte layer in green bodies showed uniformity and integrity after extrusion and sintering. The XRD analysis confirmed that no reaction phases appeared and the microstructure of the electrolyte was fairly dense (relative density > 96%) after sintering.