• Title/Summary/Keyword: Anode Properties

Search Result 494, Processing Time 0.025 seconds

The formation of Mn-ferrite by electrolysis (전해법에 의한 Mn-ferrite 생성)

  • 김유상;황용길
    • Journal of the Korean institute of surface engineering
    • /
    • v.24 no.1
    • /
    • pp.1.2-1.2
    • /
    • 1991
  • The formation of managanese ferrite has been performed to investigate some properties according to the variation of compositions, pH, current density by electrolysis. It has been found that the amount of oxidized weight of anode were increased with increasing current density. The amount of oxidized weight of anode were most in pH10. As the result of X-ray diffraction Mn Fe2O4 crystal composition in pH13. When the particles of Mnx Fe3-x O4 were heated at 30$0^{\circ}C$, it has been shown typical MnFe2O4(JCPDS Card No. 10-319) in X-1 composition. As the result of SEM observation, the size of MnFe2O4 particles were about 0.1$\mu\textrm{m}$, the shape of particles were spherical type. According to the above mentioned experimental condition, 0.1-0.5$\mu\textrm{m}$ sub-micron particles of manganese ferrite were formed from the wasted manganese dry cell, through washing longrightarrow reduction longrightarrow electrloysis.

The formation of Mn-ferrite by electrolysis (전해법에 의한 Mn-ferrite 생성)

  • 김유상;황용길
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.1
    • /
    • pp.1-7
    • /
    • 1992
  • The formation of manganese ferrite has been performed to investigate some properties according to the variation of compositions, pH, current density by electrolysis. It has been found that the amount of oxidized weight of anode were increased with increasing current density. The amount of oxidized weight of anode were most in pH 10. As the result of X-ray diffraction Mn Fe₂O₄ crystal composition in pH13. When the particles of Mn/sub x/ Fe/sub 3-x/O₄ were heated at 300℃, it has been shown typical Mn Fe₂O₄(JCPDS Card No. 10-319) in X=1 composition. As the result of SEM observation, the size of MnFe₂O₄ particles were about 0.1㎛, the shape of particles were spherical type. According to the above mentioned experimental condition, 0.1-0.5㎛ sub-micron particles of manganese ferrite were formed from the wasted manganese dry cell, through washing → reduction → electrloysis.

  • PDF

Effect of Space Charge on the Properties of Pyroelectricity of PVDF Films (PVDF 필름의 초전특성에 공간전하가 미치는 영향)

  • 류강식;류부형;김경환;김봉흡
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.3
    • /
    • pp.163-170
    • /
    • 1988
  • In order to investigate the mechanism of pyroelectricity on polyvinylidene fluoride film, the observations were carried out on the characteristics of infrared spectra, thermally stimulated current and pyroelectric current. As the results obtained from the study, it was concluded that the origin for thermally stimulated current exhibited above room temperature can be attributed to hole injected from anode during poling process. Futhermore it is clarified also that the origin of pyroelectricity observed on the specimen concerned is to spontaneous polarization of CF dipole attached to molecular chain segment, however, the fraction of spontaneous polarization is largely influenced by the amount of hole injected from anode.

  • PDF

The Electrochemical Properties of Heat Treated Poly(p-phenylene) Based Carbon for Li rechargeable batteries (리튬 2차 전지용 Poly(p-phenyllene) based carbon의 열처리 온도에 따른 전기화학적 특성)

  • 김주승;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.373-377
    • /
    • 1996
  • Carbon materials have become a major interestings of research directed toward the development for anode of lithium batteries of enhanced cell capacity. The purpose of this study is to research and develop poly(p-phenylene)(PPP)-based carbon as a anode of lithium secondary batteries. We have synthesized PPP from benzen by chemical reaction. And then disordered carbon materials were obtained by heat-treating PPP in a nitrogen atmosphere at 40$0^{\circ}C$ to 100$0^{\circ}C$ for 1 hour. The carbon prepared by heat treatment showed a broad x-ray diffraction peak around 2$\theta$=23$^{\circ}$. Electrodes were charged and discharged at a current density of 0.1㎃/$\textrm{cm}^2$. Excellent reversible capacity of 275㎃h/g and 97% of charge/discharge efficiency were observed heat treated PPP-based carbon a $700^{\circ}C$.

  • PDF

Effects of Ru Co-Sputtering on the Properties of Porous Ni Thin Films

  • Kim, Woo-Sik;Choi, Sun-Hee;Lee, Hae-Weon;Kim, Joo-Sun
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.11 s.294
    • /
    • pp.746-750
    • /
    • 2006
  • NiO films and Ru co-sputtered NiO films were deposited by reactive magnetron sputtering for micro-solid oxide fuel cell anode applications. The deposited films were reduced to form porous films. The reduction kinetics of the Ru doped NiO film was more sluggish than that of the NiO film, and the resulting microstructure of the former exhibited finer pore networks. The possibility of using the films for the anodes of single chamber micro-SOFCs was investigated using an air/fuel mixed environment. It was found that the abrupt increase in the resistance is suppressed in the Ru co-sputtered film, as compared to undoped film.

Characteristics and fabrications of high brightness organic light emitting diode(OLED) (고휘도 유기발광소자 제작 및 특성)

  • 장윤기;이준호;남효덕;박진호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.316-319
    • /
    • 2001
  • Organic light emitting diodes(OLEDs) with a hole injection layer inserted between Indium-Tin-Oxide(ITO) anode and hole transport layer were fabricated. The effect of plasma treatment on the surface properties of Indium-Tin-Oxide(ITO) anode were studied. The electrical and optical characteristics of the fabricated organic light emitting diodes(OLEDs) were also studied. The diode including of plasma treated ITO substrate and the hole injection layer, which showed the luminance of 5280 cd/㎡ at 8 V

  • PDF

Electrochemical Properties of Graphene Composite for Lithium Polymer Battery (리튬 폴리머전지용 Graphene Composite의 전기화학적 특성)

  • 김종욱;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.359-362
    • /
    • 2000
  • The purpose of this study is to research and develop graphene composite for lithium polymer battery. VO(graphene) composite is one of the promising material as a electrode active material for lithium polymer battery(LPB). We investigated AC impedance response and charge/discharge cycling of VO(graphene)/SPE/Li cells. The first discharge capacity of VO(graphene) cathode with 50wt.% V$_2$O$\sub$5/ was 150mAh/g, while that of VO(graphene) cathode with 85wt.% V$_2$O$\sub$5/ was 248mAh/g. The Ah efficiency was above 98% after the 2nd cycle. The discharge capacity of VO(graphene) anode with 3wt.% V$_2$O$\sub$5/ was 718 and 266mAh/g at cycle 1 and 10 at room temperature, respectively. The VO(graphene) anode with 3wt.% V$_2$O$\sub$5/ in PVDF-PAN-PC-EC-LiC1O$_4$ electrolyte showed good capacity with cycling.

  • PDF

A study for development of high speed hard chrome plating solution (고속 경질 크롬 도금 용액 개발에 관한 연구)

  • 추현식;이홍로
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.5
    • /
    • pp.263-269
    • /
    • 1992
  • To enhancing efficiency of hard chrome plating solution more highly, cathode current efficiency were surveyed connected with hardness of deposits, surface morphology, TEM analysis and corrosion test of anode materials. Efficiency war increased up to 26% values by adding catalyst and two kind of additives. With given bath composition and 6$0^{\circ}C$, 60A/d$\m^2$ electrolosis conditionss bright and micro cracked deposits were well obtained, which showed HV 1000 values. From corrosion tests, anode materials such as Pb-Te (0.02%) and Pb-Ag(1%) showed most anti-corrosive results. Through SEM micrograph observations, ef-fects of additives on levelling, brightness and micro crack properties of hard chrome deposits could be con-firmed. Also, through TEM analysis the fact that deposits from crack free solution or high speed solution were more fine than from sargent solution could be confirmed.

  • PDF

Fabrication of Field Emitter Arrays by Transferring Filtered Carbon Nanotubes onto Conducting Substrates

  • Jang, Eun-Soo;Goak, Jung-Choon;Lee, Han-Sung;Lee, Seung-Ho;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.311-311
    • /
    • 2009
  • Carbon nanotubes (CNTs) belong to an ideal material for field emitters because of their superior electrical, mechanical, and chemical properties together with unique geometric features. Several applications of CNTs to field emitters have been demonstrated in electron emission devices such as field emission display (FED), backlight unit (BLU), X-ray source, etc. In this study, we fabricated a CNT cathode by using filtration processes. First, an aqueous CNT solution was prepared by ultrasonically dispersing purified single-walled CNTs (SWCNTs) in deionized water with sodium dodecyl sulfate (SDS). The aqueous CNT solution in a milliliter or even several tens of micro-litters was filtered by an alumina membrane through the vacuum filtration, and an ultra-thin CNT film was formed onto the alumina membrane. Thereafter, the alumina membrane was solvated by acetone, and the floating CNT film was easily transferred to indium-tin-oxide (ITO) glass substrate in an area defined as 1 cm with a film mask. The CNT film was subjected to an activation process with an adhesive roller, erecting the CNTs up to serve as electron emitters. In order to measure their luminance characteristics, an ITO-coated glass substrate having phosphor was employed as an anode plate. Our field emitter array (FEA) was fairly transparent unlike conventional FEAs, which enabled light to emit not only through the anode frontside but also through the cathode backside, where luminace on the cathode backside was higher than that on the anode frontside. Futhermore, we added a reflecting metal layer to cathode or anode side to enhance the luminance of light passing through the other side. In one case, the metal layer was formed onto the bottom face of the cathode substrate and reflected the light back so that light passed only through the anode substrate. In the other case, the reflecting layer coated on the anode substrate made all light go only through the cathode substrate. Among the two cases, the latter showed higher luminance than the former. This study will discuss the morphologies and field emission characteristics of CNT emitters according to the experimental parameters in fabricating the lamps emitting light on the both sides or only on the either side.

  • PDF

Effects of Pitch Softening Point-based on Soft Carbon Anode for Initial Efficiency and Rate Performance (피치계 소프트 카본 음극재 제조 시 피치의 연화점이 음극재 초기 효율 및 율속 특성에 미치는 영향)

  • Kim, Kyung Soo;Im, Ji Sun;Lee, Jong Dae;Kim, Ji Hong;Hwang, Jin Ung
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.331-336
    • /
    • 2019
  • In this study, required properties and optimized procedure conditions for the pitch based soft carbon anode of lithium ion battery was investigated for improving the initial efficiency and rate performance. Each petroleum residue was thermally treated at 360, 370, and $410^{\circ}C$ for 3 hours to synthesis a pitch and the corresponding pitch shows the softening point of 86, 98, and $152^{\circ}C$, respectively. The elemental analysis and thermal characteristics of the pitch were investigated by EA analysis and TGA. It was noted that the low H/C and improved thermal stability were obtained with the high softening point. The obtained pitch was carbonized at $1,200^{\circ}C$ for 1 hour to produce a soft carbon based anode. As a result of investigating the crystal structure by XRD analysis, it was found that the crystallinity of soft carbon increased with increasing the softening point. It was considered that relatively higher boiling components and decreases in the evaporation component resulted the components participation for cyclization during the heat treatment process. The soft carbon based anode with an improved crystallinity shows the enhanced initial efficiency and rate performance. The mechanism of both improvements was also discusssed based on the developed crystal structure of soft carbon based anode materials.