• 제목/요약/키워드: Anode Materials

검색결과 826건 처리시간 0.034초

패턴된 전극을 가진 표면 전도형 단실형 고체산화물 연료전지의 제조 (Fabrication of Co-Planar Type Single Chamber SOFC with Patterned Electrodes)

  • 안성진;김용범;문주호;이종호;김주선
    • 한국세라믹학회지
    • /
    • 제43권12호
    • /
    • pp.798-804
    • /
    • 2006
  • Co-planar type single chamber solid oxide fuel cell with patterned electrode on a surface of electrolyte has been fabricated by robo-dispensing method and microfluidic lithography. The cells were composed of NiO-GDC-Pd or NiO-SDC cermet anode, $(La_{0.7}Sr_{0.3})_{0.95}MnO_3$ cathode, and yttria stablized zirconia electrolyte. The cell performance at $900^{\circ}C$ was investigated as a function of electrode geometries, such as anode-to-cathode distance, numbers of electrode pairs. Relationship between OCV and I-V characteristics at the optimized operation condition was also studied by DC source meter under the mixed gas condition of methane, air, and nitrogen. An increase of anode-facing-cathode area leads to lower OCV due to intermixing between product gases of anode and cathode, which in turn decreases the oxygen partial pressure difference.

전고체 리튬 이차전지용 합금계 음극 소재의 연구 동향 (Recent Progress of Alloy-Based All-Solid-State Li-Ion Battery Anodes)

  • 윤정명;박철민
    • Corrosion Science and Technology
    • /
    • 제22권6호
    • /
    • pp.466-477
    • /
    • 2023
  • The increasing demand for high-performance energy storage systems has highlighted the limitations of conventional Li-ion batteries (LIBs), particularly regarding safety and energy density. All-solid-state batteries (ASSBs) have emerged as a promising next-generation energy storage system, offering the potential to address these issues. By employing nonflammable solid electrolytes and utilizing high-capacity electrode materials, ASSBs have demonstrated improved safety and energy density. Automotive and energy storage industries, in particular, have recognized the significance of advancing ASSB technology. Although the use of Li metal as ASSB anode is promising due to its high theoretical capacity and the expectation that Li dendrites will not form in solid electrolytes, persistent problems with Li dendrite formation during cycling remain. Therefore, the exploration of novel high-performance anode materials for ASSBs is highly important. Recent research has focused extensively on alloy-based anodes for ASSBs, owing to their advantages of no dendrite formation and high-energy density. This study provides a comprehensive review of the latest advancements and challenges associated with alloy-based anodes for ASSBs.

Degradation Comparison of Hydrogen and Internally Reformed Methane-Fueled Solid Oxide Fuel Cells

  • Kim, Young Jin;Lee, Hyun Mi;Lim, Hyung-Tae
    • 한국세라믹학회지
    • /
    • 제53권5호
    • /
    • pp.483-488
    • /
    • 2016
  • Anode supported solid oxide fuel cells (SOFCs), consisting of Ni+YSZ anode, YSZ electrolyte, and LSM+YSZ cathode, were fabricated and constant current tested with direct internal reforming of methane (steam to carbon ratio ~ 2) as well as hydrogen fuel at $800^{\circ}C$. The cell, operated under direct internal reforming conditions, showed relatively rapid degradation (~ 1.6 % voltage drop) for 95 h; the cells with hydrogen fuel operated stably for 170 h. Power density and impedance spectra were also measured before and after the tests, and post-test analyses were conducted on the anode parts using SEM / EDS. The results indicate that the performance degradation of the cell operated with internal reforming can be attributed to carbon depositions on the anode, which increase the resistance against anode gas transport and deactivate the Ni catalyst. Thus, the present study shows that direct internal reforming SOFCs cannot be stably operated even under the condition of S/C ratio of ~ 2, probably due to non-uniform mixture (methane and steam) gas flow.

A Study on the Application of Cathodic Protection for Anti-Corrosion of Automobile Body

  • Sohn, DaeHong;lee, Yongho;Jang, HeeJin;Cho, SooYeon
    • Corrosion Science and Technology
    • /
    • 제21권1호
    • /
    • pp.1-8
    • /
    • 2022
  • The use of cathodic protection for metals can be achieved by sacrificial anode CP or impressed current CP, or a combination of both. Cathodic protection is a highly effective anti-corrosion technique for submerged metals or metals in soil. But because the non-immersion atmospheric automobile environment is a high resistance environment, it is limited by fundamental cathodic protection. However, the application of cathodic protection to automobiles is attractive because of the possibility of maintaining corrosion resistance while using lower-cost materials. A commercially available product for automobiles that uses both sacrificial anode CP and impressed current CP was tested in a periodic salt spray environment to investigate the performance of the devices. Experimental results show that the metal to be protected has different anti-corrosion effects depending on the distance from the anode of the device, but it is effective for the entire 120 cm long specimen exposed with one anode. The cathodic protection is effective because the conductive tape attached to the anode of the structure to be protected acts as a constant electrolyte in wet and dry conditions. The results show that the entire standard passenger car can be protected by cathodic protection with 4 anodes.

박막공정의 융합화를 통한 초소형 고체산화물 연료전지의 제작: I. Spray Pyrolysis법으로 증착된 Ni 기반 음극과 스퍼터링으로 증착된 YSZ 전해질의 다층구조 (Fabrication of Micro Solid Oxide Fuel Cell by Thin Film Processing Hybridization: I. Multilayer Structure of Sputtered YSZ Thin Film Electrolyte and Ni-Based Anodes deposited by Spray Pyrolysis)

  • 손지원;김형철;김혜령;이종호;이해원
    • 한국세라믹학회지
    • /
    • 제44권10호
    • /
    • pp.589-595
    • /
    • 2007
  • Physical properties of sputtered YSZ thin film electrolytes on anode thin film by spray pyrolisis has been investigated to realize the porous electrode and dense electrolyte multilayer structure for micro solid oxide fuel cells. It is shown that for better crystallinity and density, YSZ need to be deposited at an elevated temperature. However, if pure NiO anode was used for high temperature deposition, massive defects such as spalling and delamination were induced due to high thermal expansion mismatch. By changing anode to NiOCGO composite, defects were significantly reduced even at high deposition temperature. Further research on realization of full cells by processing hybridization and cell performance characterization will be performed in near future.

Effect of Thermal Treatment Temperature on Lifespan of Conductive Oxide Electrode

  • Yoo, Y.R.;Chang, H.Y.;Jang, S.G.;Nam, H.S.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • 제6권2호
    • /
    • pp.44-49
    • /
    • 2007
  • Dimensionally stable anodes have been widely used to cathodically protect the metallic materials in corrosive environments including concrete structure as the insoluble anode. Lifespan of the anode for concrete construction can be determined by NACE TM0294-94 method. Lifespan of conductive oxide electrode would be affected by thermal treatment condition in the process of sol-gel coatings. This work aims to evaluate the effect of thermal treatment temperature on the lifespan of the $RuO_{2}$ electrode. $450^{\circ}C$ treated conductive oxide electrode showed the excellent properties and its lifespan was evaluated to be over 88 years in 3% NaCl, 4% NaOH, and simulated pore water. This behavior was related to the formation of $RuO_{2}$.

IZTO 애노드를 이용하여 제작한 인광 OLED 및 플랙시블 OLED 특성 (Characteristics of phosphorescent OLEDs and flexible OLED fabricated indium-zinc-tin-oxide anode)

  • 최광혁;배정혁;문종민;정진아;김한기;강재욱;김장주
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.399-400
    • /
    • 2007
  • In this work, we have investigated the characteristics of the phosphorescent OLED and flexible OLED fabricated on IZTO/glass and IZTO/PET anode film grown by magnetron sputtering, respectively. Electrical and optical characteristics of amorphous IZTO/glass anode exhibited similar to commercial ITO anode even though it was deposited at room temperature. In addition, the amorphous IZTO anode showed higher work function than that of the commercial ITO anode after ozone treatment for 10 minutes. Furthermore, a phosphorescent OLED fabricated on amorphous IZTO anode film showed improved current-voltage-luminance characteristics, external quantum efficiency and power efficiency in contrast with phosphorescent OLED fabricated on commercial ITO anode film. This indicates that IZTO anode is promising alternative anode materials for anode in OLEDs and flexible OLEDs.

  • PDF

테이프 캐스팅법에 의한 MCFC Anode용 Ni-WC 박판 제조 (Sheet fabrication of Ni-WC anode for Molten Carbonate Fuel Cell by Tape Casting Method)

  • 최진영;정성회;장건익
    • 한국재료학회지
    • /
    • 제10권10호
    • /
    • pp.715-720
    • /
    • 2000
  • MCFC 작동온도인 $650^{\circ}C$에서 음극의 creep과 소결에 의한 구조적 변형을 막기 위해 기계적 합금법에 의한 Ni-WC분말을 합금화하여 변형에 대한 저항성을 증대시키고자 하였다. 80시간동안 어트리션 밀링을 실시한 분말은 XRD 분석결과 결정규칙이 파괴된 비정질 상을 보였다. 제조된 분말은 적당한 점도의 슬러리로 제조후 테이프 캐스팅법에 의해 green sheet를 제조하였다. 제조된 박판의 두께는 0.9mm였고, 평균 기공 크기는 $3~5{\mu\textrm{m}}$, 기공율은 55%였다. 소결체의 XRD 분석결과 2차성은 생성되지 않았으며, SEM 및 dot-Mapping image를 통해 Ni matrix 안에 W 입자가 미세하고 균일하게 분포되어 있어 고용강화 및 분산강화를 통해 Ni 음극의 기계적 특성을 향상시킬 것으로 기대된다.

  • PDF

Ni-MH 2차 전지의 상온 및 저온 전극특성 최적화를 위한 첨가제 및 전해질 설계 (Design of Additives and Electrolyte for Optimization of Electrode Characteristics of Ni-MH Secondary Battery at Room and Low Temperatures)

  • 양동철;박충년;박찬진;최전;심종수;장민호
    • 한국수소및신에너지학회논문집
    • /
    • 제18권4호
    • /
    • pp.365-373
    • /
    • 2007
  • We optimized the compositions of electrolyte and additives for anode in Ni-MH battery to improve the electrode characteristics at ambient and low temperatures using response surface method(RSM). Among various additives for anode, PTFE exhibited the greatest influence on the discharge capacity of the anode. Through response optimization process, we found the optimum composition of the additives to exhibit the greatest discharge capacity. When the amount of additives was too small, the anode was degraded with time due to the low binding strength among alloy powders and the resultant separation of powders from the current collector. In contrast, the addition of large amount of the additives increased in the resistance of the electrode. In addition, the discharge capacity of the anode at $-18^{\circ}C$ increased with decreasing the concentration of KOH, NaOH and LiOH in design range of electrolyte. The resistance and viscosity of electrolyte appear to affect the discharge capacity of the anode at low temperature.

Buffer and Anode Combined Ta Doped In2O2 Electrodes Prepared by Co-sputtering for PEDOT:PSS-free Organic Solar Cells

  • Lee, Hye-Min;Noh, Yong-Jin;Na, Seok-In;Park, Hyun-Woo;Chung, Kwun-Bum;Kima, Han-Ki
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.168.1-168.1
    • /
    • 2014
  • We developed poly (3,4-ethylene dioxylene thiophene):poly (styrene sulfonic acid) (PEDOT:PSS)-free organic solar cells (OSCs) using buffer and anode combined Ta doped $In_2O_3$ (ITaO) electrodes. To optimize the ITaO electrodes, we investigated the effect of $Ta_2O_5$ doping power on the electrical, optical, and structural properties of the co-sputtered ITaO films. The optimized ITaO film doped with 20 W $Ta_2O_5$ radio frequency power showed sheet resistance of 17.11 Ohm/square, a transmittance of 93.45%, and a work function of 4.9 eV, all of which are comparable to the value of conventional ITO electrodes. The conventional bulk heterojunction OSC with ITaO anode showed a power conversion efficiency (PCE) of 3.348% similar to the OSCs (3.541%) with an ITO anode. In addition, OSCs fabricated on an ITaO electrode successfully operated without an acidic PEDOT:PSS buffer layer and showed a PCE of 2.634%, which was much higher than the comparable no buffer OSC with an ITO anode. Therefore, co-sputtered ITaO electrodes simultaneously acting as a buffer and an anode layer can be considered promising transparent electrodes for cost-efficient and reliable OSCs because they can eliminate the use of an acidic PEDOT:PSS buffer layer.

  • PDF