• Title/Summary/Keyword: Annular single crystal

Search Result 2, Processing Time 0.014 seconds

A Review on Swirling Flow by Using Flow Visualization Techniques in the Circular Tubes (원형관 내에서 유동가시화 기법을 이용한 선회유동에 관한 연구고찰)

  • Chang, Tae-Hyun;Doh, Deog-Hee;Lee, Kwoon-Soo
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.3
    • /
    • pp.12-21
    • /
    • 2010
  • Swirling flows are found in very wide range of applications, for examples, cyclone separators, spraying machines, heat exchangers and jet pumps, ect. Relatively, little work has been done on the swirl flow using flow visualization techniques. This study deals with many visualization techniques to study on swirling flow. These techniques are related to oil films methods, smoke, dye liquids, liquid crystal, stroboscope light, smoke wire, white light, naphthalene sublimation, LDV(lase doppler Velocimetry) and PIV(particle image velocimetry). The present work has handled single, annular, carved tube, swirl expansion and swirl wake using several visualization methods in the vertical and horizontal circular tube.

Quantitative Study of Annular Single-Crystal Brain SPECT (원형단일결정을 이용한 SPECT의 정량화 연구)

  • 김희중;김한명;소수길;봉정균;이종두
    • Progress in Medical Physics
    • /
    • v.9 no.3
    • /
    • pp.163-173
    • /
    • 1998
  • Nuclear medicine emission computed tomography(ECT) can be very useful to diagnose early stage of neuronal diseases and to measure theraputic results objectively, if we can quantitate energy metabolism, blood flow, biochemical processes, or dopamine receptor and transporter using ECT. However, physical factors including attenuation, scatter, partial volume effect, noise, and reconstruction algorithm make it very difficult to quantitate independent of type of SPECT. In this study, we quantitated the effects of attenuation and scatter using brain SPECT and three-dimensional brain phantom with and without applying their correction methods. Dual energy window method was applied for scatter correction. The photopeak energy window and scatter energy window were set to 140ke${\pm}$10% and 119ke${\pm}$6% and 100% of scatter window data were subtracted from the photopeak window prior to reconstruction. The projection data were reconstructed using Butterworth filter with cutoff frequency of 0.95cycles/cm and order of 10. Attenuation correction was done by Chang's method with attenuation coefficients of 0.12/cm and 0.15/cm for the reconstruction data without scatter correction and with scatter correction, respectively. For quantitation, regions of interest (ROIs) were drawn on the three slices selected at the level of the basal ganglia. Without scatter correction, the ratios of ROI average values between basal ganglia and background with attenuation correction and without attenuation correction were 2.2 and 2.1, respectively. However, the ratios between basal ganglia and background were very similar for with and without attenuation correction. With scatter correction, the ratios of ROI average values between basal ganglia and background with attenuation correction and without attenuation correction were 2.69 and 2.64, respectively. These results indicate that the attenuation correction is necessary for the quantitation. When true ratios between basal ganglia and background were 6.58, 4.68, 1.86, the measured ratios with scatter and attenuation correction were 76%, 80%, 82% of their true ratios, respectively. The approximate 20% underestimation could be partially due to the effect of partial volume and reconstruction algorithm which we have not investigated in this study, and partially due to imperfect scatter and attenuation correction methods that we have applied in consideration of clinical applications.

  • PDF