• 제목/요약/키워드: Annular flow

검색결과 349건 처리시간 0.028초

이중냉각핵연료 온도 및 열유속 분리 평가 (Temperature and Heat Split Evaluation of Annular Fuel)

  • 양용식;전태현;신창환;송근우
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2236-2241
    • /
    • 2008
  • The surface heat flux of nuclear fuel rod is the most important factor which can affect safety of reactor and fuel. If fuel rod surface heat flux exceeds the CHF(${\underline{C}}ritical$ ${\underline{H}}eat$ ${\underline{F}}lux$), fuel can be damaged. In case of double cooled annular fuel, which is under developing, contains two coolant channels. Therefore, a generated heat in the fuel pellet can move to inner or outer channel and heat flow direction is decided by both sides heat resistance which varied by dimension and material property change which caused by temperature and irradiation. The new program(called DUO) was developed. For the calculation of surface heat flux, a both sides convection by inner/outer coolant, s gap temperature jump and conduction in the fuel are modeled. Especially, temperature and time dependent fuel dimension and material property change are considered during the iteration. A sample calculation result shows that the DUO program has sufficient performance for annular fuel thermal hydraulics design.

  • PDF

OPTIMIZED NUMERICAL ANNULAR FLOW DRYOUT MODEL USING THE DRIFT-FLUX MODEL IN TUBE GEOMETRY

  • Chun, Ji-Han;Lee, Un-Chul
    • Nuclear Engineering and Technology
    • /
    • 제40권5호
    • /
    • pp.387-396
    • /
    • 2008
  • Many experimental analyses for annular film dryouts, which is one of the Critical Heat Flux (CHF) mechanisms, have been performed because of their importance. Numerical approaches must also be developed in order to assess the results from experiments and to perform pre-tests before experiments. Various thermal-hydraulic codes, such as RELAP, COBRATF, MARS, etc., have been used in the assessment of the results of dryout experiments and in experimental pre-tests. These thermal-hydraulic codes are general tools intended for the analysis of various phenomena that could appear in nuclear power plants, and many models applying these codes are unnecessarily complex for the focused analysis of dryout phenomena alone. In this study, a numerical model was developed for annular film dryout using the drift-flux model from uniform heated tube geometry. Several candidates of models that strongly affect dryout, such as the entrainment model, deposition model, and the criterion for the dryout point model, were tested as candidates for inclusion in an optimized annular film dryout model. The optimized model was developed by adopting the best combination of these candidate models, as determined through comparison with experimental data. This optimized model showed reasonable results, which were better than those of MARS code.

환형 5중 동축관 연소기 내부에서의 예혼합 화염의 전파 특성 직접 관찰 (Direct Observation of Premixed Flame Propagation Characteristics in an Annular Coaxial 5-Tubes Burner)

  • 조문수;백다빈;김남일
    • 한국연소학회지
    • /
    • 제18권3호
    • /
    • pp.24-30
    • /
    • 2013
  • Flame stabilization characteristics of premixed flames in an annular coaxial 5-tubes burner (AC5TB) were investigated experimentally. The AC5TB was made of five quartz tubes, and the flame stabilization conditions in that burner were investigated with the variation of equivalence ratio and the flow velocities. Flame behaviors inside of narrow annular tubes could be observed directly. Overall flame stabilization conditions were similar to that of the previous study, while the flame behaviors and structures were different mainly due to the controlled uniform distribution of the velocities in channels. Flame flashback conditions were thought to be governed by the competition between heat release rate, heat loss and heat recirculation in each channel. Stationary flames at a fixed location were compared in its velocity distribution and burned gas temperature across the channel. This AC5TB can be a basic configuration for the development of flame stabilization model of porous media combustors, and it will help understand about the real behavior of flames in meso-scale combustion spaces.

끝벽의 설치 위치 및 변형 높이에 따른 환형 터빈 노즐 안내깃 캐스케이드 내 3차원 유동에 미치는 영향에 관한 수치해석 (Numerical Analysis on Effects of Positioning and Height of the Contoured Endwall on the Three-Dimensional Flow in an Annular Turbine Nozzle Guide Vane Cascade)

  • 이우상;김대현;민재홍;정진택
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3247-3252
    • /
    • 2007
  • Endwall losses contribute significantly to the overall losses in modern turbomachinery, especially when aerodynamic airfoil load and pressure ratio are increased. Hence, reducing the extend and intensity of the secondary flow structures helps to enhance overall efficiency. From the large range of viable approaches, a promising combination positioning and height of endwall contouring was chosen. The objective of this study is to document the three-dimensional flow in a turbine cascade in terms of streamwise vorticity, total pressure loss distribution and static pressure distribution on the endwall and blade surface and to propose an appropriate positioning and height of the endwall contouring which show best secondary, overall loss reduction among the simulated endwall. The flow through the gas turbine were numerically analyzed using three dimensional Navier-Stroke equations with a commercial CFD code ANSYS CFX-10. The result shows that the overall loss is reduced near the flat endwall rather than contoured endwall, and the case of contoured endwall installed at 30% from leading edge with height of 25% for span showed best performance.

  • PDF

스파이럴 제트 유동에 미치는 축소노즐 각도의 영향 (The Effect of Convergent Nozzle Angle on a Spiral Jet Flow)

  • 조위분;백승철;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1482-1487
    • /
    • 2004
  • In general the swirl jet is generated by the injected flow that is forced to the tangential direction. A spiral nozzle which is composed of an annular slit and a convergent nozzle, is released the spiral jet that is generated by the radial flow injection through an annular slit. The objective of the present study is to investigate the additional study that is studied a changed the convergent nozzle angle and nozzle length. In the present computation, a finite volume scheme is used to solve three dimensional Navier-Stokes equations with RNG $k-{\varepsilon}$ turbulent model. The convergent nozzle angle and the nozzle length of the spiral nozzle are varied to obtain different spiral flows inside the conical convergent nozzle. The present computational results are compared with the previous experimental data. The results obtained show that the convergent nozzle angle and the nozzle length of the spiral jet strongly influence the characteristics of the spiral jets, such as a tangential and a jet width.

  • PDF

Slim hole 경사 환형관내 고-액 혼합유동 특성에 관한 연구 (Solid-liquid mixture flow characteristics in an inclined slim hole annulus)

  • 서병택;한상목;우남섭;김영주;황영규
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.1315-1320
    • /
    • 2008
  • An experimental study was carried out to study the solid-liquid mixture upward flow in a vertical and inclined annulus with rotating inner cylinder. Lift forces acting on a fluidized particle plays a central role in many importance applications, such as the removal of drill cuttings in horizontal drill holes, sand transport in fractured reservoirs, sediment transport and cleaning of particles from surfaces, etc. Field measurements have revealed that the pressure drop over a borehole during drilling of a slim oil well or a well with a long reach can depend significantly on the rotation speed of the drill pipe. An accurate prediction of the annular frictional pressure drop is therefore important for conditions where the annular clearance is small. Effect of annulus inclination and drill pipe rotation on the carrying capacity of drilling fluid, particle rising velocity, and pressure drop in the slim hole annulus have been measured for fully developed flows of water and of aqueous solutions.

  • PDF

이중 동축류 버너에서 부분예혼합화염의 특성에 관한 연구 (Characteristics of Partially Premixed Flames in Double Concentric Burner)

  • 권성준;차민석;정석호
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1998년도 제17회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.131-138
    • /
    • 1998
  • Flame characteristics in a double concentric burner has been studied experimentally. Air is supplied through a central nozzle, methane/air premixture is supplied in a inner annular part, and coflowing shield air is supplied to minimize outside disturbances. Depending on flow rate and concentration, various flame shapes can be observed. As the flow rate difference between central air jet and annular premixed jet is varied, several distinctive flames are observed. Conditions of partially premixed flames are further investigated; nozzle attached rich premixed flame, inner lifted flame, and outer lifted flame. Using the Abel transformation of digitized images of flames, cross- sectional images of flames can be obtained, from which overall structure of flames can be identified. PLIF measurement of OR radical was also conducted. OR radicals were mainly distributed in diffusion flame region. From the difference of OR distribution between nozzle attached and lifted flames, similarity of OR distribution between tribrachial flame and lifted flames in this study are observed.

  • PDF

스트럿트가 있는 초음속 환형유동장에 대한 수치적 연구 (A Numerical Study on Strut-Placed Supersonic Flow in Annulus Flowfield)

  • 박희준;주원구
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2002년도 추계 학술대회논문집
    • /
    • pp.53-63
    • /
    • 2002
  • In this numerical approach, strut-placed supersonic annular flow is examined. The geometrical variations of strut cause strong influence on flowfield structures. The geometrical variations are as follows, swept effect, attack angle effect, variation of leading edge shape. These changed features such as velocity structure, pressure structure, shock-boundary layer interaction are compared and analyzed according to each geometrical configuration.

  • PDF

2유체 분무노즐의 분열특성(I)-액주분열 및 내부유동- (Breakup Characteristics in Plain Jet Air Blast Atomizer(I)-Jet Breakup and Internal Flow-)

  • 김혁주;이충원
    • 대한기계학회논문집B
    • /
    • 제21권8호
    • /
    • pp.1009-1023
    • /
    • 1997
  • The breakup length of a liquid jet with flowrate, formed by releasing through a nozzle of circular cross-section into the atmosphere, was experimented and studied for 3 liquid nozzles of varying diameters. The experimental result was analyzed using the existing theoretical equation for predicting the breakup length. It was found that the breakup length of liquid jet depends on the velocity, and the breakup length increases with increasing of the liquid nozzle diameter. Also, the variation range of the breakup length for the same flowrate of liquid increased rapidly as velocity was increased for laminar flow, but in the turbulent flow region, it leveled off in the range of approximately 0.55-0.7 of the mean breakup length. Furthermore, when the longest smooth liquid jet was applied to the co-axial flow air blast atomizer, the effect of air flow on the flow pattern and breakup length was studied for 6 glass nozzles of different lengths and diameters. It was found that depending on the diameter of the mixing tube and liquid jet, it was possible to observe a wide range of flow patterns, such as liquid jet through flow, partial annular flow and annular flow. The liquid jet breakup length was more sensitive to the change in the length rather than the diameter of the mixing tube. As the length of the mixing tube shortens, the breakup length also shortens rapidly.

세관내 R-134a의 유동특성에 관한 실험적 연구 (An Experimental Study on Flow Characteristics of R134a in a Small Diameter Tube)

  • 손창효
    • 한국산학기술학회논문지
    • /
    • 제8권6호
    • /
    • pp.1307-1312
    • /
    • 2007
  • 본 논문은 세관내 R-134a의 유동특성을 실험적으로 조사한 것이다. 이에 대한 실험장치는 마그네틱 기어 펌프, 증발기, 수액기, 사이트 글라스, 응축기 계측기로 구성된다. 유동양식을 관찰하기 위한 사이트 글라스는 증발기 입출구에 설치하였다. 실험은 세관내 R-22와 R-134a의 유동특성을 살펴보기 위해서 수행되었다. 이에 대한 실험변수인 냉매질량 유속은 100에서 1000 $kg/m^2s$이고, 포화온도는 $30^{\circ}C$이다. 증발과정 중의 유동양식에서 2 mm의 세관내 환상유동은 8 mm관의 대구경관에 비해 저건도와 저질량유속에서 발생하였다. 본 실헐 결과와 종래의 유동양식 선도와 비교한 결과, 2 mm의 세관내 증발 유동양식은 Baker, Mandhane, Taitel-Dukler의 유동양식 선도와는 큰 차이를 보였지만, Dobson의 유동양식 선도와는 좋은 일치를 보였다.

  • PDF