• Title/Summary/Keyword: Annular Jet

Search Result 61, Processing Time 0.025 seconds

Spray and Combustion Characteristics in Model Gas Turbine Combustor (모형 가스터빈 연소기에서의 분무 및 연소 특성)

  • Hwang, Jin-Seok;Koo, Ja-Ye;Seong, Hong-Gye;Kang, Jeong-Seek
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.381-386
    • /
    • 2007
  • Jet-A spray, evaporation and combustion were numerically analyzed in annular type model combustor using KIVA-3V. Liquid fuel's atomizing was affected by flow field near droplet. When cooling flow was not optimized, SMD was increased, and equivalence ratio was horizontally distributed in combustor's downstream. Flame spread out horizontally and separated in combustors downstream. Flame center was separated by cooling flow. Flame separation made local high temperature in downstream that caused NO increase.

  • PDF

Development and Performance Tests of the Waste Water Diffusers using Acoustic Resonance and Oscillatory Pulsation (음향공진과 맥진동 현상을 이용한 폐수처리용 산기관 개발 및 성능시험)

  • Hong, Suk-Yoon;Moon, Jong-Duck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.52-58
    • /
    • 1996
  • Using the acoustic resonances and oscillatory pulsations considered as the branch of wave technologies, the concept of the acoustic resonance diffusers for waste water treatment which maximize the oxygen transfer efficiency in gas-liquid two phase medium have been proposed, and studies for the principles and performance tests were accomplished. Besides, the design concepts for the low pressure Helmholtz resonator, cylinder and annular type reflection resonator and combined type resonance system have been implemented. The acoustic resonance energy which can speed up the mass transfer process increase the oxygen transfer efficiency, and periodic pulsations generated from the instability of air jet from nozzle make very small air bubbles. Then, the annular type jet resonator(AJR) applying these two principles successfully was evalulated as the most promising device and also the efficiency showing $20{\sim}30%$ better than conventional diffusers has been verified experimentally.

  • PDF

Measurement of soot concentration in flames using laser-induced incandescence method (이중 동축 확산화염의 형상 및 배출 특성)

  • Jurng, Jong-Soo;Lee, Gyo-Woo
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.1
    • /
    • pp.49-57
    • /
    • 1999
  • An experimental study on double-concentric diffusion flame has been carried out in order to investigate the shape, the flame length, and the other characteristics of the flame. Flow visualization of the flame by the $TiO_2$ particles and also the emission measurements are conducted. The commercial grade LP gases are used as fuel. The inverse diffusion flames are formed at the center when the central air flow rate is about 0.1 L/min. With a larger flow rate of the central air jet than 0.2 L/min the flame turns to be an annular-shaped flame, which is very bright. When the central air flow rate increases over 2.4 L/min, the flame turns to blue and the flame tips are opened because of the lifting of the inner part of the flame. Because of this lifting and the incomplete combustion, the CO emission increases abruptly from 25 ppm to more than 150 ppm. On the contrary, the NOx emission is decreased.

  • PDF

An Experimental Study on Turbulent Diffusion Flame in Double Coaxial Air Jets(II) (동축이중 공기분류중의 난류확산화염에 관한 실험적 연구 II)

  • 조용대;최병윤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1234-1243
    • /
    • 1990
  • Double coaxial are jets(annular and coaxial air jets) between which propane gas is fed was selected to study the structure of diffusion flames in turbulent shear flow. Schlieren and direct photographs are taken to visualize the flame structure. Mean and fluctuating temperatures and ion currents were measured to investigate the macroscopic and the instantaneous flame structure. The objective of this study is to understand the interaction between combustion and mixing process especially in the transition region of turbulent shear flow. The investigation reported in this paper focuses on the macroscopic and the instantaneous structures of three flames obtained. The increased mixing effect resulting from increase of Reynolds number of central air jet makes the flame bluish and short. When the velocity of surrounding air stream is higher than that of central air jet, the instantaneous flame structure is composed of coherent structure. It is considered that the flame structure of transitional region of mixing layer depends on the structure of mixing layer of non-reacting conditions.

A Review on Swirling Flow by Using Flow Visualization Techniques in the Circular Tubes (원형관 내에서 유동가시화 기법을 이용한 선회유동에 관한 연구고찰)

  • Chang, Tae-Hyun;Doh, Deog-Hee;Lee, Kwoon-Soo
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.3
    • /
    • pp.12-21
    • /
    • 2010
  • Swirling flows are found in very wide range of applications, for examples, cyclone separators, spraying machines, heat exchangers and jet pumps, ect. Relatively, little work has been done on the swirl flow using flow visualization techniques. This study deals with many visualization techniques to study on swirling flow. These techniques are related to oil films methods, smoke, dye liquids, liquid crystal, stroboscope light, smoke wire, white light, naphthalene sublimation, LDV(lase doppler Velocimetry) and PIV(particle image velocimetry). The present work has handled single, annular, carved tube, swirl expansion and swirl wake using several visualization methods in the vertical and horizontal circular tube.

Numerical Simulation for Model Gas Turbine Combustor (모형 가스터빈 연소기의 수치해석적 연구)

  • 김태한;최병륜
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1789-1798
    • /
    • 1994
  • This paper aimed for numerical simulation of complicated gas turbine combustor with swirler. For the convenience of numerical analysis, fuel nozzle and air linear hole areas of secondary and dilution zone, which are issued to jet stream, were simplified to equivalent areas of annular type. In other to solve these problems, imaginary source terms which are corresponded to supplied fuel amount were added to those of governing equation. Chemical equilibrium model of infinite reaction rate and $k-{\epsilon}-g$ model with the consideration of density fluctuation were applied. As the result, swirl intensity contributed to mixing of supplied fuel and air, and to speed up the flame velocity than no swirl condition. Temperature profiles were higher than experimental results at the upstream and lower at the downstream, but total energy balance was accomplished. As these properties showed the similar trend qualitatively, simplified simulation method was worth to apply to complicated combustor for predicting combustion characteristics.

Mixed Flow Characteristics of Aeration Process for Recirculation Aquaculture System Using Ejector (이젝터를 이용한 순환양식 시스템 폭기공정의 혼합유동 특성)

  • Park, Sang Kyoo;Yang, Hei Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.9
    • /
    • pp.847-854
    • /
    • 2013
  • The objective of this study is to experimentally investigate the mixed flow and oxygen transfer characteristics of a horizontally injected aeration process using an annular nozzle ejector. The flow rate ratio, pressure ratio and ejector efficiency are calculated using the measured flow rate and pressure with the experimental parameters of the ejector pitch and primary flow rate. The visualization images of mixed flow issuing from the ejector are analyzed qualitatively, and the volumetric oxygen transfer coefficients are calculated using the measured dissolved oxygen concentration. The mixed flow behaves like a buoyancy jet or horizontal jet owing to the momentum of primary flow and air bubble size. The buoyancy force of the air bubble and the penetration of mixed flow are found to be important parameters for the oxygen transfer rate owing to the contact area and time of two phases.

Development of the Micro Gas Turbine Engine (마이크로 가스터빈 엔진 개발)

  • Kim, Seung-Woo;Kwon, Gii-Hun;Jang, Il-Hyeong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.361-366
    • /
    • 2001
  • A mim turbo-shaft engine of 50HP for UAV, which can be easily modified to turbo-prop and turbo-jet engine by sharing the core engine and has many applications to civilian demands and munitions, will be developed This kind of micro gas turbine engine has been developed mostly by the corporations which have special technology but are small in its scale. Especially, the gas turbine engine can be easily applied to other fields and developed by domestic technology, so that the sharing of technology is planed to realize through the cooperations with academies and research institutes. In this paper, the gas turbine engine, which has the compressor ratio of 3.8, the turbine inlet temperature of l180K and the engine speed higher than 100,000 rpm, is composed of centrifugal compressor, combustor, gas generator turbine, free power turbine and gear box. The competitiveness of the gas turbine engine can be obtained from minimizing its cost by the utilization of domestic infrastructure for the performance test and the decisive outsourcing.

  • PDF

Flow Characteristics of An Atmospheric Pressure Plasma Torch

  • Moon, Jang-H.;Kim, Youn-J.;Han, Jeon-G.
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.1
    • /
    • pp.69-73
    • /
    • 2003
  • The atmospheric pressure plasma is regarded as an effective method for surface treatments because it can reduce the period of process and doesn't need expensive vacuum apparatus. The performance of non-transferred plasma torches is significantly depended on jet flow characteristics out of the nozzle. In order to produce the high performance of a torch, the maximum discharge velocity near an annular gap in the torch should be maintained. Also, the compulsory swirl is being produced to gain the shape that can concentrate the plasma at the center of gas flow. In this work, the distribution of gas flow that goes out to atmosphere through a plenum chamber and nozzle is analyzed to evaluate the performance of atmospheric pressure plasma torch which can present the optimum design of the torch. Numerical analysis is carried out with various angles of an inlet flow velocity. Especially, three-dimensional model of the torch is investigated to estimate swirl effect. We also investigate the stabilization of plasma distribution. For analyzing the swirl in the plenum chamber and the flow distribution, FVM (finite volume method) and SIMPLE algorithm are used for solving the governing equations. The standard k-model is used for simulating the turbulence.

Atomization Characteristics of Shear Coaxial Injectors (전단 동축형 인젝터의 미립화 특성에 관한 연구)

  • 정원호;김동준;임지혁;윤영빈
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.168-172
    • /
    • 2003
  • The effects of injection conditions on the droplet sizes resulting from the disintegration of a liquid jet by a fast annular gas stream have been investigated using PDPA. The gas/liquid momentum ratio M = $\rho$$_{g}$ $U_{g}$$^2$/$\rho$$_1$ $U_1$$^2$ and Weber number We = $\rho$$_{g}$ $g^2$ $D_1$/$\sigma$ are selected as key parameters in atomization of shear coaxial spray from the fluid mechanics standpoint. It is revealed that SMD( $D_{32}$) varies inversely with gas/liquid momentum ratio(M), whereas Weber number(We) has little effect on the droplet sizes as gas velocities increase. It is found that gas/liquid momentum ratio is more dominant factor controlling the breakup and atomization process of shear coaxial spray. Finally, an empirical correlation between SMD and injection conditions(i.e. gas/liquid momentum ratio M and Weber number We) is proposed based on the experimental results.

  • PDF