• Title/Summary/Keyword: Annular Disc

Search Result 28, Processing Time 0.032 seconds

A Minimally Invasive Rabbit Model of Progressive and Reproducible Disc Degeneration Confirmed by Radiology, Gene Expression, and Histology

  • Kwon, Young-Joon
    • Journal of Korean Neurosurgical Society
    • /
    • v.53 no.6
    • /
    • pp.323-330
    • /
    • 2013
  • Objective : To develop a simple, reproducible model of disc degeneration in rabbits through percutaneous annular puncture and to confirm the degree of degeneration over time. Methods : Fifteen New Zealand white rabbits (4 to 5 months old and weighing approximately 3 to 3.5 kg each) underwent annular puncture of the L2-L3, L3-L4, and L4-L5 discs. Rabbits were sacrificed at 4, 8, or 20 weeks after puncture. For a longitudinal study to assess changes in disc height over time, serial X-rays were performed at 0, 2, 4, 8, and 20 weeks for rabbits in the 20-week group. Upon sacrifice, the whole spinal column and discs were extracted and analyzed with magnetic resonance imaging (MRI), real time reverse transcriptase-polymerase chain reaction, and histological staining. Results : The X-rays showed a slow, progressive decrease in disc height over time. Significant disc space narrowing compared to preoperative disc height was observed during the time period (p<0.001). The MRI grade, aggrecan, and matrix metalloprotease-13 mRNA expression and hematoxylin and eosin/safranin O/anti-collagen II staining were consistently indicative of degeneration, supporting the results of the X-ray data. Conclusion : Percutaneous annular puncture resulted in slow, reproducible disc degeneration that was confirmed by radiology, biochemistry, and histology. This in vivo model can be used to study and evaluate the safety and efficacy of biologic treatments for degenerative disc disease.

Matrix Degradative Enzymes and Their Inhibitors during Annular Inflammation : Initial Step of Symptomatic Intervertebral Disc Degeneration

  • Kim, Joo Han;Park, Jin Hyun;Moon, Hong Joo;Kwon, Taek Hyun;Park, Youn Kwan
    • Journal of Korean Neurosurgical Society
    • /
    • v.55 no.5
    • /
    • pp.237-243
    • /
    • 2014
  • Objective : Symptomatic disc degeneration develops from inflammatory reactions in the annulus fibrosus (AF). Although inflammatory mediators during annular inflammation have been studied, the roles of matrix metalloproteinases (MMPs) and their inhibitors have not been fully elucidated. In this study, we evaluated the production of MMPs and tissue inhibitors of metalloproteinase (TIMPs) during annular inflammation using an in vitro co-culture system. We also examined the effect of notochordal cells on annular inflammation. Methods : Human AF (hAF) pellet was co-cultured for 48 hours with phorbol myristate acetate-stimulated macrophage-like THP-1 cells. hAF pellet and conditioned media (CM) from co-cultured cells were assayed for MMPs, TIMPs, and insulin-like growth factor (IGF)-1 levels using real-time reverse-transcriptase polymerase chain reaction and enzyem-linked immunosorbent assay. To evaluate whether notochordal cells affected MMPs or TIMPs production on annular inflammation, hAF co-cultured with notochordal cells from adult New Zealand White rabbits, were assayed. Results : MMP-1, -3, -9; and TIMP-1 levels were significantly increased in CM of hAF co-cultured with macrophage-like cells compared with hAF alone, whereas TIMP-2 and IGF-1 levels were significantly decreased (p<0.05). After macrophage exposure, hAF produced significantly more MMP-1 and -3 and less TIMP-1 and -2. Interleukin-$1{\beta}$ stimulation enhanced MMP-1 and -3 levels, and significantly diminished TIMP-2 levels. Co-culturing with rabbit notochordal cells did not significantly influence MMPs and TIMPs production or COL1A2 gene expression. Conclusion : Our results indicate that macrophage-like cells evoke annular degeneration through the regulation of major degradative enzymes and their inhibitors, produced by hAF, suggesting that the selective regulation of these enzymes provides future targets for symptomatic disc degeneration therapy.

Effect of annular phase apodizer on the read-out signal in an optical disc system (환형 위상변조 Apodizer가 광학디스크 시스템의 재생신호에 미치는 영향)

  • jeong, Ho;Chung, Chang-Sub;Park, Seong-Jong
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.4
    • /
    • pp.270-275
    • /
    • 2001
  • We have studied effects of annular phase apodizer and bump shapes on the read-out signal in an optical disc system, using scalar diffraction theory. In order to detennine the optimum parameters of annular phase apodizer which will minimize the influence of spherical aberration, we defined WR as the ratio between the maximum wavefront aberration and some absolute value of wavefront aberration at any position r in the pupil. A cylindric bump, a semi-conic bump and a conic bump were$.$ also considered as different types of bump shape. As the radius and shape of bump varies, the read-out signal from an optical disc system with an annular phase apodizer was similar to that from an optical disc system without apodizer. When spherical aberration increases, the maximum read-out signal of an optical disc system with an annular phase apodizer and minimum bump radii giving read-out signal higher than 0.6 rarely varied. Especially, the optimum parameters at $W_R$ = 0.4 , 0.6 gave the most compensated effect of a spherical aberration.ration.

  • PDF

The Effect of the Secondary Annular Stream on Supersonic Jet

  • Lee, Kwon-Hee;Toshiaki Setoguchi;Shigeru Matsuo;Kim, Hyeu-Dong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1793-1800
    • /
    • 2003
  • The present study addresses an experimental investigation of the near field flow structures of supersonic, dual, coaxial, free, jet, which is discharged from the coaxial annular nozzle. The secondary stream is made from the annular nozzle of a design Mach number of 1.0 and the primary inner stream from a convergent-divergent nozzle. The objective of the present study is to investigate the interactions between the secondary stream and inner supersonic jets. The resulting flow fields are quantified by pitot impact and static pressure measurements and are visualized by using a shadowgraph optical method. The pressure ratios of the primary jet are varied to obtain over-expanded flows and moderately under-expanded flows at the exit of the coaxial nozzle. The pressure ratio of the secondary annular stream is varied between 1.0 and 4.0. The results show that the secondary annular stream significantly changes the Mach disc diameter and location, and the impact pressure distributions. The effects of the secondary annular stream on the primary supersonic jet flow are strongly dependent on whether the primary jet is under-expanded or over-expanded at the exit of the coaxial nozzle.

Effects of Geometric Configuration on the Vibro-acoustic Characteristics of Radial Vibration of an Annular Disc (환형 디스크 형상이 래디얼 진동에 의한 음향방사 특성에 미치는 영향)

  • Lee, Hyeong-Ill
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.596-604
    • /
    • 2007
  • This article investigates the effects of geometric configuration on the vibro-acoustic characteristics of in-plane vibration of a thick annular disc. Disc thickness and outer radius for a given inner radius are selected as independent variables having reasonable ranges. Variations in structural eigensolutions for radial modes are investigated using pre-developed analytical method. Based on these data, far-field sound pressure distributions due to the modal vibrations for a given geometry are also calculated using an analytical solution. Modal sound powers and radiation efficiencies are calculated from the far-field sound pressure distributions and vibratory velocity distributions on the radial surfaces. Based on the results explained above, the geometric configuration that minimizes modal sound radiations in a given frequency range is determined. Finally sound power and radiation efficiency spectra for a unit harmonic force from the selected geometric configuration are obtained from structural and acoustic modal data using the modal expansion technique. Multi-modal sound radiations of the optimized disc that are obtained using proposed analytical methods are confirmed with numerical results. Using the procedure introduced in this article, sound radiation due to in-plane modes within a specific frequency range can be minimized by the disc geometry modifications in a comprehensive and convenient manner.

Residual stress in an elastoplastic annular disc interacting with an elastic inclusion

  • Zarandi, Somayeh Bagherinejad;Lai, Hsiang-Wei;Wang, Yun-Che;Aizikovich, Sergey M.
    • Coupled systems mechanics
    • /
    • v.8 no.3
    • /
    • pp.273-287
    • /
    • 2019
  • Elastoplastic analysis of an annular disc, being fully constrained on its outer rim and interacting with a purely elastic inclusion perfectly bonded with its inner rim, is conducted to study its plastic deformation and residual stress under thermal cycles. The system is termed the composite disc. Quasi-static plane-strain deformation is assumed, and the von Mises yield criterion with or without the Ludwik hardening rule is adopted in our finite element calculations. Effects of multiple material properties simultaneously being temperature dependent on the plastic behavior of the composite disc are considered. Residual stress is analyzed from a complete loading and unloading cycle. Results are discussed for various inclusion radii. It is found that when temperature dependent material properties are considered, the maximum residual stress may be greater than the maximum stress inside the disc at the temperature-loaded state due to lower temperature having larger yield stress. Temperature independent material properties overestimate stresses inside materials, as well as the elastic irreversible temperature and plastic collapse temperature.

Rabbit Model for in vivo Study of Intervertebral Disc Degeneration and Regeneration

  • Kong, Min-Ho;Do, Duc-H.;Miyazaki, Masashi;Wei, Feng;Yoon, Sung-Hwan;Wang, Jeffrey C.
    • Journal of Korean Neurosurgical Society
    • /
    • v.44 no.5
    • /
    • pp.327-333
    • /
    • 2008
  • Objective: The purpose of this study is to verify the usefulness of the rabbit model for disc degeneration study. Materials: The L1-L2, L2-L3, L3-L4. or L4-L5 lumbar intervertebral disc (IVD) of 9 mature male New Zealand White rabbits were injured by inserting a 16-gauge needle to a depth of 5 mm in the left anterolateral annulus fibrosus while leaving L5-L6 IVD uninjured. Three other rabbits also received intradiscal injections of rabbit disc cells transfected with adenovirus and bone morphogenetic protein-2 (ad-BMP-2) at L4-L5 in addition to injury by 16-gauge needle at the L1-L2 level. Using digitized radiographs, measurements of IVD height were made and analyzed by using the disc height index (DHI). Magnetic resonance imaging (MRI) scans of the injured discs, injected discs, and uninjured L5-L6 discs were performed at 15 weeks post surgery and compared with preoperative MRI scans. Results: All twelve rabbits showed consistent results of disc degeneration within 15 weeks following annular puncture. DHIs of injured discs were significantly lower than that of the uninjured L5-L6 discs (p<0.05). The mean value of disc degeneration grade of injured discs was significantly higher than that of uninjured discs (p<0.05). The injection of disc cell transfected with ad-BMP-2 did not induce disc regeneration at 15 weeks after injection. Conclusion: This study showed that the injured disc had a significant change in DHI on simple lateral radiograph and disc degeneration grade on MRI scans within 15 weeks in all rabbits. Rabbit annular puncture model can be useful as a disc degeneration model in vivo.

Wideband Double-Radiator Circular Disc Annular Monopole Antenna

  • Afoakwa, Samuel;Diawuo, Henry Abu;Jung, Young-Bae
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.4
    • /
    • pp.252-257
    • /
    • 2018
  • A wideband double radiator circular disc annular monopole antenna is proposed is this work. The radiators are etched on the surfaces of two Taconic TLY-5 substrates with a circular hole cut out of each of the radiators initially at the centers of the radiators with subsequent downward displacement of the holes. The antenna is designed with a two-step feeding transformer system for impedance matching between the input power source supplied by a $50-{\Omega}$ SMA connector and the monopole radiators. The transformer system improves the bandwidth performance at higher frequencies. The proposed antenna achieves a wideband having the capability of working between 0.645 and 18.775 GHz, corresponding to a -10 dB bandwidth of 186.7% with gain ranging from 0.95 to 8.26 dBi. In comparison to other metal disc planar monopole antennas, the proposed antenna has a small total size width due to the size of the ground plane, which has a diameter 100 mm. The frequency range of the antenna provides applications in global positioning systems, mobile communications, ultra-wideband short distance communications, and wireless computer networks.

The Obturator Guiding Technique in Percutaneous Endoscopic Lumbar Discectomy

  • Han, In-Ho;Choi, Byung-Kwan;Cho, Won-Ho;Nam, Kyoung-Hyup
    • Journal of Korean Neurosurgical Society
    • /
    • v.51 no.3
    • /
    • pp.182-186
    • /
    • 2012
  • In conventional percutaneous disc surgery, introducing instruments into disc space starts by inserting a guide needle into the triangular working zone. However, landing the guide needle tip on the annular window is a challenging step in endoscopic discectomy. Surgeons tend to repeat the needling procedure to reach an optimal position on the annular target. Obturator guiding technique is a modification of standard endoscopic lumbar discectomy, in which, obturator is used to access triangular working zone instead of a guide needle. Obturator guiding technique provides more vivid feedback and easy manipulation. This technique decreases the steps of inserting instruments and takes safer route from the peritoneum.

Vibration Analysis of a Piezoelectric Disc for a Torsional Transducer (비틀림 변환기용 압전 원판의 진동 해석)

  • Lee, Jung-Hyun;Kim, Jin-Oh
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.911-914
    • /
    • 2005
  • The vibrational characteristics of the piezoelectric disc for a torsional vibration transducer is theoretically studied in this paper. The characteristic equation of the piezoelectric annular disc has been derived from Newton's End law and Gibb's free energy equations. With an anisotropic material property of the disc, the characteristic equation has yielded resonance frequencies. Numerically-calculated results were compared with the values obtained by finite element analysis and experiments

  • PDF