• Title/Summary/Keyword: Annual storage efficiency

Search Result 28, Processing Time 0.027 seconds

Estimation of the Economic Value of Pumped Storage Power Generation in Korea (양수발전의 비시장 가치 추정)

  • Won, DooHwan
    • Asia-Pacific Journal of Business
    • /
    • v.13 no.1
    • /
    • pp.263-275
    • /
    • 2022
  • Purpose - This study estimated the non-market value of pumped storage power generation using the contingent valuation method(CVM). Design/methodology/approach - CVM, a non-market value estimation method, was used. The perception of pumped storage power generation and the willingness to pay(WTP) for pumped storage power generation were investigated among 612 randomly selected households. Findings - It was analyzed that the average value per household was 7309.99 won/month, and the sources of these benefits were 1819.37 won due to the improvement of power generation efficiency, 1320.48 won due to the improvement of power system reliability, 2359.24 won due to the stabilization of electricity rates, 2110.89 won due to water resource management It was assumed that a circle occurred. If the average monthly benefit per household is expanded to cover countries across the country, it is estimated that the annual value to our society from pumped storage power generation will be KRW 1.796.6 trillion. Research implications or Originality - It is necessary to consider the operation of pumped-water power generation by reflecting the value of pumped-up power generation that is not evaluated in the market. Since Korea's electricity market is isolated in a state where it is impossible to connect with other countries, it may be vulnerable to a stable electricity operation system. Therefore, there is a need for a facility that can stably secure reserve power and produce power quickly when necessary. If pumped-water power generation is actively used for power operation, a more stable power system can be secured.

The Effects of Infiltration Rate of Foundation Ground Under the Bioretention on the Runoff Reduction Efficiency (식생체류지의 원지반 침투율이 유출량 저감효과에 미치는 영향모의)

  • Jeon, Ji-Hong;Jung, Kwang-Wook
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.1
    • /
    • pp.72-77
    • /
    • 2019
  • Soil type in LID infiltration practices plays a major role in runoff reduction efficacy. In this study, the effects of infiltration rate of foundation ground under bioretention on annual runoff reduction rate was evaluated using LIDMOD3 which is a simple excel based model for evaluating LID practices. A bioretention area of about 3.2 % was required to capture surface runoff from an impervious area for a 25.4 mm rainfall event. The relative error of runoff from bioretention using LIDMOD3 is 10 % less than that of SWMM5.1 for a total rainfall event of 257.1 mm during the period of Aug. 1 ~ 18, 2017, hence, the applicability of LIDMOD3 was confirmed. Annual runoff reduction rates for the period 2008 ~ 2017 were evaluated for various infiltration rates of foundation ground under the bioretention which ranged from 0.001 to 0.600 m/day and were converted to annual runoff reduction for hydrologic soil group. The runoff reduction rates within hydrologic soil group C and D were steeply increased through increased infiltration rate but not steep within hydrologic A and B with reduction rates ranging from 53 ~ 68 %. The estimated time required to completely empty a bioretention which has a storage depth of 0.632 m is 3.5 ~ 6.9 days and we could assume that the annual average of antecedent rainfall is longer than 3.5 ~ 6.9 days. Therefore, we recommended B type as the minimum hydrologic soil group installed LID infiltration practices for high runoff reduction rate.

A Study on the Implementation Issues for Demand-side Management of Energy Suppliers (에너지공급자 수요관리 개선방안 연구)

  • Kim, Hyeong-Jung;Son, Hag-Sig
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1566-1574
    • /
    • 2010
  • This paper presents an in-depth review for current status for demand-side management (DSM) investment of energy supplier and an useful prospect on the introduction of Energy Efficiency Resource Standards (EERS). According to the Article 9 of Rational Energy Utilization Act, Energy suppliers-Korea Electric Power Corporation (KEPCO), Korea Gas Corporation (KOGAS) and Korea District Heat Corporation (KDHC) prescribed by Presidential Decree-must establish and implement annual demand-side management investment plan to improve energy efficiency in production, transformation, transportation, storage and usage of corresponding energy and to reduce demand and green house gas emissions. In this paper, we examine the DSM programs of energy suppliers and the results of DSM investment in 2009, then we propose a reasonable solution for the development of DSM investment. Furthermore, in order to compare our situation, the case studies were conducted on EERS issues in England, Italy, France and U.S, such as establishing the energy saving target, selecting the target energy supplier, and penalty and incentive mechanisms. Throughout the case studies, this paper suggests the directions to the DSM investment planning of energy suppliers and the major issues to prepare EERS in Korea.

Characteristics of Heavy Metal Emissions from Stationary Sources (고정오염원에서의 중금속 배출특성 연구)

  • Park, Jung-Min;Lee, Sang-Bo;Cha, Jun-Seok;Kwon, Oh-Sang;Lee, Sang-Hak
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.5
    • /
    • pp.574-583
    • /
    • 2008
  • The results of HAPs emission data using TRI (Toxic Release Inventory), SODAM (Source Data Management system) were investigated and the emissions of 7 heavy metals from their sources and emission processes were also analyzed. Questionnaire for source data analysis as well as the stack sampling were carried out for 17 factories among 6 selected industrial types. The annual amount of emissions was estimated based on the measured concentration and flow rates. All sources were operated with high efficiency control devices and the concentration levels of all heavy metals were shown to be below 0.1 to of regulation standard. The highest emission source of heavy metals was steel manufacturing industry with the annual emission of 342.9 kg/yr and followed by hazardous waste incinerator, paint manufacturing, nonferrous metal manufacturing, rolling & press goods manufacturing and storage battery manufacturing. In the case of Hg, the emissions were quite significant from electric acros of steel manufacturing industry, although the concentration level was below the emission standard, showing the necessity of specific care for its management.

A Practical Research for More Efficient Utilization of Water Resources in the South-Western Part of Korea (서남부지역 수자원의 효율적 이용방안)

  • 김현영;서영제;최용선;문종원
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.279-286
    • /
    • 1998
  • The south-western part of Korea is situated in an unbalance of water supply and demand relating to the Keum, Mankyung, Dongjin and Youngsan River and their estuary reservoirs. For example, the Keum River estuary reservoir is discharging the larger amount of yearly runoff into the sea due to the small storage capacity, while Saemankeum estuary reservoir which is under construction, has the smaller runoff amount comparing with its storage capacity, And the downstream area of the Youngsan River, such as Youngkwang, Youngam are deficient in water due in larger demand and smaller supply. In order to solve the above unbalanced water supply and demand and also to improve the water use efficiency, the Hierarchical Operation Model for Multi-reservoir System(HOMMS) has been developed and applied to analyze the multi-reservoir operation assuming that the above reservoirs were linked each other. The result of this study shows that 2,148MCM of annual additional water requirement for agricultural and rural water demands are required in this region at 2011 of target year, and these demands can be resolved by diverting and reusing 1,913MCM of the released water from the estuary reservoirs into the sea.

  • PDF

Climate Change Adaptation Strategy by Multipurpose, Proactive Rainwater Management and Case Studies in Korea (다목적이고 적극적인 빗물관리에 의한 기후변화 적응방안과 국내 사례)

  • Han, Mooyoung;Mun, Jungsoo;Kim, Tschungil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.2
    • /
    • pp.223-230
    • /
    • 2009
  • Most urban water management systems are becoming vulnerable to flooding and drought due to the climate change (CC), urbanization and energy shortage. Despite of poor water management circumstances caused by extremely uneven annual rainfall and hilly terrain, traditionally we have made a sound and sustainable life based on our own philosophy and technologies which copes with our rigid environment. In this study a new paradigm of rainwater management is suggested and multipurpose and creative rainwater harvesting and management (RWHM) systems are introduced providing several case studies such as rainfall storage drainage (RSD) system, rainwater infiltration facilities and star city RWHM system. This new RWHM paradigm leads Seoul Metropolitan Government (SMG) in the Republic of Korea to change regulations and politics for the integrated RWHM. Finally, RWHM is expected to improve the safety, efficiency, energy consumption of urban water infrastructure, to reduce urban heat island phenomenon and, furthermore, to contribute in finding solutions for worldwide water issues and to adapt CC.

A Study on the Development of Performance Evaluation Method for the Stormwater Treatment Wetland (비점오염관리를 위한 강우유출수 처리습지의 성능평가방법 개발)

  • Kim, Young Ryun;Kim, Sang Dan;Lee, Suk Mo;Sung, Kijun;Song, Kyo Ook;Son, Min Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.3
    • /
    • pp.354-364
    • /
    • 2013
  • The performance of the stormwater wetlands can be significantly influenced by antecedent stormwater in storage at the commencement of a stormevent. As inflows are intermittent and stochastic in nature, the evaluation of the treatment efficiency of a stormwater wetland should be considered by runoff capture and water treatment characteristics during interevent periods. In this study, analytical probabilistic model is applied to identity runoff capture rate and treatment efficiency of the stormwater wetland. To achieve this, continuous rainfall data recorded in Busan for 31 years has been analyzed to derive the runoff capture rate, and 1st order kinetic decay constants ($k_V$, 1/d) are calculated from regression analysis to identify pollutants removal during interevent periods. The results show that about 60.9% of annual average runoff is captured through the stormwater wetland. The annual average treatment efficiencies of SS, BOD, COD, TN and TP is about 11.4, 8.9, 9.8, 4.3 and 9.6%, respectively. The analytical model has been compared with the numerical model and it shows that analytical model is valid. Performance evaluation methods developed in this study has the advantages of considering characteristics of rainfall-runoff, facility type and pollutant removal.

Detention Orifice Design for Non-point Source Management Using SWMM (SWMM을 이용한 비점오염원 관리 저류지의 오리피스 설계기법 연구)

  • Cho, SeonJu;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.5
    • /
    • pp.686-692
    • /
    • 2012
  • This study illustrates how to design and evaluate a non-point sources management detention pond using SWMM. In particular, special attention is given to the orifice design. In SWMM, orifice properties that need to be defined include its height above the bottom of the storage unit, its type, its geometry and its hydraulic properties. Among the various characteristics of orifice, the orifice hole size which is closely related to hydraulic retention time is focused in this study. Sensitivity analysis of orifice size in annual non-point sources reduction efficiency is carried out. In addition, a methodology which can be used to design a virtual junction in SWMM has been proposed to quantify water quality improvement triggered by the detention pond installation. As a result, it is recommended that a detention outlet should be designed to be about 2 to 3 days of hydraulic retention time.

Analysis on the Effect of Thermal Performance with Various Load Patterns for Solar Hot Water Heating System

  • Kim, Byoung-Gi;Jang, Hwan-Young;Chung, Kyung-Taek;Suh, Jeong-Se
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.3
    • /
    • pp.108-113
    • /
    • 2007
  • The performance of a solar water heater incorporating evacuated tubes was evaluated using a transient simulation program, TRNSYS. Simulations were performed for $60^{\circ}C$ of hot water load temperature and for 280 liter of daily hot water volumes and three 400 liter of storage tank volumes. Three patterns of daily hot water consumption profile were used in the present study (morning, lunch and evening). The results show that the increase in solar fraction depends on the load profile, as well as the collector efficiency coefficient. Hot water draw profile has a large effect on the performance of the SDHWS, the morning load profile has the highest solar fraction. The annual solar fraction of the system, at the weather conditions of Jinju is approximately 84% at lunch load pattern, the 280 kg of load volume, 400 kg of tank volume and the $60^{\circ}C$ of load temperature.

Cooling Performance Analysis of Solar Heating and Cooling System in an Office Building (사무소 건물 적용 태양열냉난방시스템의 냉방성능 분석)

  • Jang, Jae-Su;Ko, Myeong-Jin;Kim, Yong-Shik
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.217-222
    • /
    • 2011
  • This study examined the cooling performance of a solar heating and cooling system for an office building using the dynamic simulation program (TRNSYS). This solar heating and cooling system incorporates evacuated tube solar collectors of $204m^2$, storage tank of $8m^3$, 116.2kW auxiliary heater, single-effect $LiBr/H_2O$ absorption chiller of 20RT nominal cooling capacity. It was found that for the representing day showed peak cooling load the annual average collection efficiency of the collector was 32.9% and coefficient of performance of single-effect $LiBr/H_2O$ absorption chiller was 0.68. And the results shows for the cooling season the solar fraction of the solar heating and cooling system was 32.2% and maximal and minimal solar fraction was 63.4% for May 17.9% for July respectively.

  • PDF