• Title/Summary/Keyword: Annual energy output

Search Result 45, Processing Time 0.023 seconds

Aerodynamic assessment of airfoils for use in small wind turbines

  • Okita, Willian M.;Ismail, Kamal A.R.
    • Advances in Energy Research
    • /
    • v.6 no.1
    • /
    • pp.35-54
    • /
    • 2019
  • A successful blade design must satisfy some criterions which might be in conflict with maximizing annual energy yield for a specified wind speed distribution. These criterions include maximizing power output, more resistance to fatigue loads, reduction of tip deflection, avoid resonance and minimize weight and cost. These criterions can be satisfied by modifying the geometrical parameters of the blade. This study is dedicated to the aerodynamic assessment of a 20 kW horizontal axis wind turbine operating with two possible airfoils; that is $G{\ddot{o}}ttingen$ 413 and NACA 2415 airfoils (the Gottingen airfoil never been used in wind turbines). For this study parameters such as chord (constant, tapered and elliptic), twist angle (constant and linear) are varied and applied to the two airfoils independently in order to determine the most adequate blade configuration that produce the highest annual energy output. A home built numerical code based on the Blade Element Momentum (BEM) method with both Prandtl tip loss correction and Glauert correction, X-Foil and Weibull distribution is developed in Matlab and validated against available numerical and experimental data. The results of the assessment showed that the NACA 2415 airfoil section with elliptic chord and constant twist angle distributions produced the highest annual energy production.

Performance Anaysis of Small Hydropower Plant Using Treated Effluent in Wastewater Treatment Plant (하수처리장 방류수를 이용한 소수력발전 성능분석)

  • Lee, Chul-Hyung;Park, Wan-Soon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.494-497
    • /
    • 2012
  • A methodology to predict the output performance of small hydro power using treated effluent in wastewater treatment plant has been studied. Existing plant located Kyunggi-Do were selected and the output performance characteristics for these plants were analyzed. As a result, it was found that the developed model in this study can be used to analyze the output characteristics for small hydro power in wastewater treatment plant. Additionally, primary design specifications such as design flowrate, capacity, operational rate and annual electricity production were estimated and discussed.

  • PDF

A Study on Tidal Current Energy in the Sea near Wando (완도해역의 조류에너지 자원에 관한 연구)

  • Yang, Chang-Jo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.126-132
    • /
    • 2011
  • With the worldwide trend of controlling the utilization fossil fuels inducing global climate change, many efforts will have to be made on securing stable supply of the energy due to UNFCCC. Tidal currents are a concentrated form of gravitational energy. Tidal current resource is significant, but limited locations. Technical and economic feasibility demonstration is the next needed step in the technology development process. So, we investigated overview of tidal in-stream energy in the sea near Wando, and then analytically estimated tidal energy resources and annual energy output of TECS arrays.

Optimal Design of Permanent Magnet Wind Generator for Maximum Annual Energy Production (최대 연간 에너지 생산을 위한 영구자석형 풍력발전기의 최적설계)

  • Jung, Ho-Chang;Jung, Sang-Yong;Hahn, Sung-Chin;Lee, Cheol-Gyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2109-2115
    • /
    • 2007
  • The wind generators have been installed with high output power to increase the energy production and efficiency. Hence, Optimal design of the direct-driven PM wind generator, coupled with F.E.M(Finite Element Method) and Genetic Algorithm(GA), has been performed to maximize the Annual Energy Production(AEP) over the whole wind speed characterized by the statistical model of wind speed distribution. Particularly, the parallel computing via internet web service has been applied to loose excessive computing times for optimization. The results of the optimal design of Surface-Mounted Permanent Magnet Synchronous Generator(SPMSG) are compared with each other candidates to verify the usefulness of the maximizing AEP model.

A Feasibility Study on Annual Energy Production of the Offshore Wind Farm using MERRA Reanalysis Data (해상풍력발전단지 연간발전량 예측을 위한 MERRA 재해석 데이터 적용 타당성 연구)

  • Song, Yuan;Kim, Hyungyu;Byeon, Junho;Paek, Insu;Yoo, Neungsoo
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.2
    • /
    • pp.33-41
    • /
    • 2015
  • A feasibility study to estimate annual energy production of an offshore wind farm was performed using MERRA reanalysis data. Two well known commercial codes commonly used to wind farm design and power prediction were used. Three years of MERRA data were used to predict annual energy predictions of the offshore wind farm close to Copenhagen from 2011 to 2013. The availability of the wind farm was calculated from the power output data available online. It was found from the study that the MERRA reanalysis data with commercial codes could be used to fairly accurately predict the annual energy production from offshore wind farms when a meteorological mast is not available.

PV System Output Analysis Based on Weather Conditions, Azimuth, and Tilt Angle (기상조건, 방위각 및 경사각에 따른 태양광발전시스템 출력 분석)

  • Lee, Sang Hyuk;Kwon, Oh Hyun;Lee, Kyung Soo
    • Current Photovoltaic Research
    • /
    • v.5 no.1
    • /
    • pp.38-42
    • /
    • 2017
  • PV system output is determined according to the weather conditions, the azimuth and tilt angle. Weather conditions are changing every moment and it seems to vary according to the daily, monthly, and annual basis. The azimuth and tilt angle is decided along the site conditions for the PV system installation. This paper analyzed the PV system output through the changing the weather conditions, the azimuth, and tilt angle. We compared the TMY data and analysis of the two major weather institutes which are KMA and METEONORM. PV system output trend were analyzed by changing the azimuth and tilt angle. We used simulation tool, which is named PVsyst for the entire PV system analysis.

Performance Analyzing Technique of Small Hydro Power (소수력발전 성능특성 분석기법 연구)

  • Park, W.S.;Lee, C.H.
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.1
    • /
    • pp.21-25
    • /
    • 2001
  • A methodology to predict the output performance of small hydro power using discharge of sewage treatment plant has been studied. Two sewage treatment plants existing in Chunrabuk-Do were selected and the output performance characteristics for these plants were analyzed, using developed model. As a result, it was found that the developed model in this study can be used to analyze the output characteristics for small hydro power using discharge of sewage treatment plant. Additionally, primary design specifications such as design flowrate, capacity, operational rate and annual electricity production were estimated and discussed for two plants.

  • PDF

Power Performance Characteristics of Transparent Thin-film BIPV Module depending on an Installation Angle (건물일체형 태양광발전시스템(BIPV)의 설치조건에 따른 발전특성 연구)

  • An, Young-Sub;Song, Jong-Hwa;Kim, Seok-Ge;Lee, Sung-Jin;Yoon, Jong-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.386-389
    • /
    • 2008
  • This study has analysed power output characteristics of transparent thin-film PV module depending on incidence angle and azimuth. The simulation results was evaluated power outputs of transparent thin-film PV module depending on incidence angle and azimuth after calibrating the experimental and computed data. As a result, the best power output performance of transparent thin-film PV module was obtained at slope of $30^{\circ}$ to the south, producing the annual power output of 977kWh/kWp. The annual power output data demonstrated that the PV module with a slope of $30^{\circ}$ could produce a 68 % higher power output than that with a slope of $90^{\circ}$, with respect to the inclined slope of the module. Furthermore, the PV module facing south showed a 22 % higher power output than that facing to the east in terms of the angle of the azimuth.

  • PDF

A Study on the Output Characteristics According to the Cell Electrode Pattern for a Large-area Double-sided Shingled Module (대면적 양면형 슁글드 모듈을 위한 셀 전극 패턴에 따른 출력 특성에 관한 연구)

  • Seungah, Ur;Juhwi, Kim;Jaehyeong, Lee
    • New & Renewable Energy
    • /
    • v.18 no.4
    • /
    • pp.64-69
    • /
    • 2022
  • Double-sided photovoltaic (PV) modules have received significant attention in recent years as a technology that can achieve higher annual energy production rates than single-sided modules. The shingled technology is a promising method for manufacturing high-density and high-power modules. These modules are divided by laser and joined with electrically conductive adhesives. The output efficiency of the divided cells depends on the division pattern and the electrode pattern, making it important to understand the output characteristics. In this study, the output characteristics of large-area double-sided light-receiving shingled cells with different split patterns and electrode patterns were investigated. The M6 size, with 6 divisions in the electrode pattern, had the highest efficiency when using 142 front fingers and 146 rear fingers. The M10 size, with 7 divisions, had the highest output when using 150 fingers equally in the front and rear. The M12 size, also with 7 divisions, showed the highest output characteristics when using 192 front fingers and 208 rear fingers.

Performance Characteristic Anaysis of Micro Hydropower Sites (Micro급 수력발전입지의 성능특성 분석)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.498-501
    • /
    • 2012
  • A methodology to evaluate the performance analysis for micro hydropower sites has been studied. It consists of two main parts; flow duration function which can describe micro hydropower sites and performance analysis to estimate the output characteristics of micro hydropower plants. The output performance characteristics for Magok stream was analyzed, using developed model. Also, primary design specifications such as design flowrate, installed capacity, operational rate and annual electricity production were estimated and dicussed. Additionally, it was found that the developed model in this study is useful tool to estimate feasibility assessment for micro hydropower sites.

  • PDF