• 제목/요약/키워드: Annual energy consumption

검색결과 256건 처리시간 0.025초

공동주택의 공기열원 히트펌프 적용가능성 검토를 위한 운전성능 및 탄소배출량 평가 (Evaluation of Operational Performance and Carbon Emissions for the Feasibility of Air Source Heat Pump Application in Residential Buildings)

  • 김준석;김종수;전용석
    • 한국지열·수열에너지학회논문집
    • /
    • 제20권2호
    • /
    • pp.24-36
    • /
    • 2024
  • This study analyzed the feasibility of the air source heat pump in residential buildings based on operational performance and carbon emissions. The operational performance and carbon emissions were compared between a gas boiler and an air source heat pump by calculating the annual heating and hot water load based on the 21A and 36A models for actual residential buildings. For the operational performance of the air source heat pump, the lowest (2.3) and highest COP (5.9) were attained during the winter and summer seasons, respectively. The carbon emissions depend on the amount of energy consumed during operations. An air source heat pump consumed 65.10% and 65.4% less energy per year in the 21A and 36A models, respectively compared to the existing gas boiler. Consequently, for air source heat pump carbon emissions were also reduced by 13.3% and 15.1% per year for the 21A and 36A models, respectively. It shows the effectiveness of applying an air source heat pump compared to an existing gas boiler.

Is It Possible to Achieve IMO Carbon Emission Reduction Targets at the Current Pace of Technological Progress?

  • Choi, Gun-Woo;Yun, Heesung;Hwang, Soo-Jin
    • Journal of Korea Trade
    • /
    • 제26권1호
    • /
    • pp.113-125
    • /
    • 2022
  • Purpose - The primary purpose of this study is to verify whether the target set out by the International Maritime Organization (IMO) for reducing carbon emissions from ships can be achieved by quantitatively analyzing the trends in technological advances of fuel oil consumption in the container shipping market. To achieve this purpose, several scenarios are designed considering various options such as eco-friendly fuels, low-speed operation, and the growth in ship size. Design/methodology - The vessel size and speed used in prior studies are utilized to estimate the fuel oil consumption of container ships and the pace of technological progress and Energy Efficiency Design Index (EEDI) regulations are added. A database of 5,260 container ships, as of 2019, is used for multiple linear regression and quantile regression analyses. Findings - The fuel oil consumption of vessels is predominantly affected by their speed, followed by their size, and the annual technological progress is estimated to be 0.57%. As the quantile increases, the influence of ship size and pace of technological progress increases, while the influence of speed and coefficient of EEDI variables decreases. Originality/value - The conservative estimation of carbon emission drawn by a quantitative analysis of the technological progress concerning the fuel efficiency of container vessels shows that it is not possible to achieve IMO targets. Therefore, innovative efforts beyond the current scope of technological progress are required.

도시의 인공열 산정에 관한 연구 (Study on Estimation of Urban Anthropogenic Heat Generation)

  • 손은하;김유근;홍정혜
    • 한국대기환경학회지
    • /
    • 제16권1호
    • /
    • pp.37-47
    • /
    • 2000
  • The Urban thermal environment is influenced and modified in many ways. One modification is brought by the anthropogenic heat generation emitted from the combustion processes and the use of energy such as industrial, domestic and traffic procedure. The anthropogenic heat generation affect an the increase of urban temperature, the well-known urban heat islands. The study on the urban thermal environment needs a great deal of the statistic data about the inner-structure of urban, the contribution of different constructions and the traffic amount on urban thermal environment in finite region. In order to overtake a quantitative analysis of effect of the anthropogenic heat, a distribution map of the urban anthropogenic heat was made using hte data of the energy consumption used at the several constructions and traffic amount of vehicles in Pusan Metropolitan. Annual mean heat flux over the 4$\textrm{km}^2$ urbanized area in Pusan is 41.5W/$m^2$, ranging from 31.4W/$m^2$ in summertime to 59.5W/$m^2$ in wintertime and maximum diurnal anthropogenic heat generation is corresponding to 10% of irradiance during summertime.

  • PDF

태양열 및 지중열원을 이용한 히트펌프 시스템의 최적이용법에 관한 연구 (Study on the Optimum Design of a Heat Pump System Using Solar and Ground Heat)

  • 남유진
    • 설비공학논문집
    • /
    • 제24권6호
    • /
    • pp.509-514
    • /
    • 2012
  • In this research, a heat pump system with a heat source network is suggested which utilizes solar heat and ground heat as heat source for cooling and heating. This paper describes the summary of the suggested system and the results of the annual energy simulation. The heating and cooling loads, the electric consumption and the COP were calculated by TRNSYS 16 and evaluated in the cases of different local conditions and different system compositions. In the results, the superiority of the suggested system has been quantitatively evaluated comparing with the conventional heat pump system using one heat source. Furthermore, it was more significant in cold climate, in which the heating COP was 146% increased compared the air source heat pump system, than it in subtropical climate, 119% increased.

주택지붕용 2kWp BIPV시스템의 성능 실험 및 전기 부하 감당에 관한 연구 (The Performance and Energy Saving Effect of a 2kWp Roof-Integrated Photovoltaic System)

  • 이강록;오명택;박경은;김진희;김준태
    • 한국태양에너지학회 논문집
    • /
    • 제26권1호
    • /
    • pp.13-19
    • /
    • 2006
  • The efficiency of building-integrated photovoltaic(BIPV) system is mainly determined by solar radiation and the temperature of PV modules. The performance of BIPV systems is reported to be different from that of conventional PV systems installed in the open-air. This paper presents the relationship of solar radiation and electricity generation from a 2kWp roof-integrated PV system that is applied as building elements on an experimental house, and the energy saving effect of the BIPV system for a typical house. For the performance evaluation of the BIPV system, it produced a regression equation with measured data for winter days. The regression equation showed that a comparison of the measured electricity generation and the predicted electricity generation of the BIPV system were meaningful. It showed that an annual electricity generation of the system appeared to cover around 52% of an annual electricity consumption of a typical domestic house with the floor area of $96m^2$.

부산지역 학교 기숙사에서의 소형열병합발전 시스템의 경제성 분석 (Economic Investigation of Small Scale Cogeneration System in a School Dormitory of Busan Region)

  • 송재도;구본철;강율호;박종규;이재근;안영철
    • 설비공학논문집
    • /
    • 제24권9호
    • /
    • pp.657-662
    • /
    • 2012
  • The cogeneration system can operate at efficiencies greater than those achieved when heat and power are produced in separate. The optimal system can be determined by selecting the auxiliary system combined with cogeneration system. In the present study, economic investigation has been conducted with the cogeneration electric heat pump(EHP) system and the cogeneration absorption chiller(AC) system to install in a school dormitory. To analyze life cycle cost(LCC), cost items such as initial investment costs, annual energy costs and maintenance costs of each system have been considered. The initial investment cost is referred to the basis of estimated costs, and annual energy costs such as the electric power and gas consumption are based on the data in a school dormitory. LCC is evaluated with the present worth method. Considering investigated results, the initial investment cost of the cogeneration EHP system is more profitable about 24% than that of the cogeneration AC system. The energy cost of the cogeneration EHP system is more profitable about 8% than the cogeneration AC system. The LCC shows that the cogeneration EHP system is the most effective system in the school dormitory.

Evaluation of Daily Intake of $^{238} U$ and $^{232} Th$ in a Korean Mixed Diet Sample Using RNAA

  • Chung, Yong-Sam;Moon, Jong-Hwa;Kim, Sun-Ha;Park, Kwang-Won;Kang, Sang-Hoon;Cho, Seung-Yeon
    • Nuclear Engineering and Technology
    • /
    • 제32권5호
    • /
    • pp.477-484
    • /
    • 2000
  • To estimate the degree of intake of $^{238}$ U and $^{232}$ Th through daily diet, a Korean mixed diet sample was prepared after the investigation of the amount of consumption of the daily diet which corresponds to the age of 20 to 60 years. For the analysis of U and Th, the RNAA method was applied. Two standard reference materials were used for quality control and assurance and the analytical results were compared with a certified value. The determination of U and Th in the Korean mixed diet sample was carried out under the same analytical conditions and procedures with SRM. It is found that the concentration of U and Th in a Korean mixed diet was about 35.4 ppb and 3.4 ppb. From these results, the daily intake of $^{238}$ U and $^{232}$ Th by diet is evaluated to be 6.98 and 0.67 $\mu\textrm{g}$ per day, respectively. Radioactivities related to the intake of $^{238}$ U and $^{232}$ Th were estimated to be about 86 mBq and 27 mBq per person per day and the annual dose equivalents from $^{238}$ U and $^{232}$ Th revealed as 3.18 $\mu$Sv and 0.29 $\mu$Sv per person, respectively.

  • PDF

표본건물 계측에 의한 공동주택 세대에서의 용도별 에너지사용량 및 CO2 배출량 연간 원단위 (2016 - 2017) 분석 (Annual Intensities (2016-2017) Analysis of Energy Use and CO2 Emission by End Use based on Measurements of Sample Apartment Units)

  • 진혜선;임한영;이수진;김성임;임재한;송승영
    • 대한건축학회논문집:구조계
    • /
    • 제34권7호
    • /
    • pp.43-52
    • /
    • 2018
  • In this study, annual site and primary energy use intensities (EUIs) and CO2 emission intensities (CEIs) per area by end use were estimated based on the measurement data from June 2016 to May 2017 of 50 sample apartment units in Seoul. In addition, estimated site EUIs by end use were compared to the U.S. Residential Energy Consumption Survey (RECS) 2009 data. Site EUIs by end use were found to be in the order of heating > electric appliance > domestic hot water > cooking > lighting > cooling > air movement. In the case of primary EUIs and CEIs by end use, electric appliance was found to be the largest. As results of comparison with the RECS 2009 data, it was found that site EUIs were very similar for heating, domestic hot water and electric appliance, etc., but slightly different for cooling. The number of sample apartment units will continue to increase until 2020 (total number of samples 200) and intensities data by end use will be continuously updated through continuous collection of measurement data.

표본건물 계측에 의한 업무시설에서의 용도별 에너지사용량 및 CO2 배출량 연간 원단위 (2016 - 2017) 분석 (Annual Intensities (2016-2017) Analysis of Energy Use and CO2 Emission by End Use Based on Measurements of Sample Office Building)

  • 임한영;임수현;진혜선;김성임;이수진;임재한;송승영
    • 대한건축학회논문집:구조계
    • /
    • 제34권8호
    • /
    • pp.19-27
    • /
    • 2018
  • In this study, annual site and primary energy use intensities (EUIs) and $CO_2$ emission intensities (CEIs) per area by end use were estimated based on the measurement data from June 2016 to May 2017 of 19 sample office buildings in Seoul. In addition, the estimated site EUIs by end use were compared to the U.S. Commercial Buildings Energy Consumption Survey (CBECS) 2012 data. Average site EUIs by end use were found to be in the order of electric appliance (typical floors) > heating > cooling > lighting > air movement > domestic hot water > vertical transportation > city water supply. In the case of primary EUIs and CEIs by end use, electric appliance was found to be the largest. As results of comparison with the CBECS 2012 data, it was found that the site EUIs were similar for heating, cooling, domestic hot water, and electric appliance, etc., but slightly different for lighting and air movement. The number of sample office buildings will continue to increase until 2020 (total number of samples 85) and intensities data by end use will be continuously updated through continuous collection of measurement data.

Low-grade waste heat recovery and repurposing to reduce the load on cooling towers

  • McLean, Shannon H.;Chenier, Jeff;Muinonen, Sari;Laamanen, Corey A.;Scott, John A.
    • Advances in Energy Research
    • /
    • 제7권2호
    • /
    • pp.147-166
    • /
    • 2020
  • Industrial cooling towers are often ageing infrastructure that is expensive to maintain and operate. A novel approach is introduced in which a heat pump circuit is incorporated to reduce the load upon the towers by extracting low-grade energy from the stream sent to the towers and repurposing in on-site processing operations. To demonstrate the concept, a model was constructed, which uses industrial data on cooling towers linked to a smelter's sulphuric acid plant, to allow direct economic and environmental impact comparison between different heat recovery and repurposing scenarios. The model's results showed that implementing a heat pump system would significantly decrease annual operating costs and achieve a payback period of 3 years. In addition, overall CO2 emissions could be reduced by 42% (430,000 kg/year) and a 5% heat load reduction on the cooling towers achieved. The concept is significant as the outcomes introduce a new way for energy intensive industrial sectors, such as mineral processing, to reduce energy consumption and improve long-term sustainable performance.