• Title/Summary/Keyword: Annual energy consumption

Search Result 256, Processing Time 0.022 seconds

A Study of Load Matching on the Net-Zero Energy House (넷 제로에너지주택의 부하매칭에 관한 연구)

  • Kim, Beob-Jeon;Lim, Hee-Won;Kim, Deok-Sung;Shin, U-Cheul
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.4
    • /
    • pp.55-66
    • /
    • 2018
  • nZEH (net-Zero Energy House) is defined as a self-sufficient energy building where the sum of energy output generated from new & renewable energy system and annual energy consumption is zero. The electricity generated by new & renewable energy system with the form of distributed generation is preferentially supplied to electrical demand, and surplus electricity is transmitted back to grid. Due to the recent expansion of houses with photovoltaic system and the nZEH mandatory by 2025, the rapid increase of distributed generation is expected. Which means, we must prepare for an electricity-power accident and stable electricity supply. Also electricity charges have to be reduce and the grid-connected should be operated efficiently. The introduction of ESS is suggested as a solution, so the analysis of the load matching and grid interaction is required to optimize ESS design. This study analyzed the load matching and grid interaction by expected consumption behavior using actual data measured in one-minute intervals. The experiment was conducted in three nZEH with photovoltaic system, called all-electric houses. LCF (Load Cover Factor), SCF (Supply Cover Factor) and $f_{grid}$ (Grid Interaction Index) were evaluated as an analysis indicator. As a result, LCF, SCF and $f_{grid}$ of A house were 0.25, 0.23 and 0.27 respectively; That of B house were 0.23, 0.23, 0.19, and that of C were 0.20, 0.19, 0.27 respectively.

Energy Demand/Supply Prediction and Simulator UI Design for Energy Efficiency in the Industrial Complex (산업단지 에너지 효율화를 위한 에너지 수요/공급 예측 및 시뮬레이터 UI 설계)

  • Hyungah Lee;Jong-hyeok Park;Woojin Cho;Dongju Kim;Jae-hoi Gu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.693-700
    • /
    • 2024
  • As of the end of March 2022, the total area of domestic industrial complexes is 606 km2, which is only about 0.6% of the total land area. However, as of 2018, the annual energy consumption of domestic industrial complexes is 110,866.1 thousand TOE, accounting for 53.5% of the country's total energy consumption and 83.1% of the entire industrial sector energy consumption. In addition, industrial complexes have a significant impact on the environment, accounting for 45.1% of the country's total greenhouse gas emissions and 76.8% of industrial sector greenhouse gas emissions. Under this background, in this study, in order to contribute to the energy efficiency of industrial complexes, a prediction study on energy demand and supply for an industrial complex in Korea using machine learning was conducted. In addition, a simulator UI screen was designed to more efficiently convey information on energy demand/supply prediction results and energy consumption status. Among the machine learning algorithms, Multi-Layer Perceptron (MLP) was used, and Bayesian Optimization was applied as an optimization technique for the prediction model. The energy prediction model for the industrial complex built in this study showed a prediction accuracy of 87.90% for compressed air demand and 99.54% for the flow rate available for the public air compressor.

Application of Life Cycle Assessment into the Apartment Housing and Calculation of the Energy Consumption and $CO_2$ Emission (전과정평가를 이용한 공동주택의 에너지소비량과 이산화탄소 배출량 산정)

  • Jung, Bo-Ra;Lee, Ha-Shik;Choi, Young-Oh;Lee, Kang-Hee
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2008.04a
    • /
    • pp.235-240
    • /
    • 2008
  • The environment has played a key role to improve the living condition and develop the industry. In building industries, we should consider the environment and mitigate the environmental affect. For mitigating the its affect, various areas of building technology have been developed and applied into filed work. In addition, the process in applying into field requires to conduct the assessment of the environmental affect and improve its applied technology. A lot of assessment methods are proposed in evaluate the building condition such as post-occupancy evaluation, life cycle management and life cycle assessment. Among these assessment methods, life cycle assessment is effectively utilized the environmental affect in building life cycle. Therefore, this paper aimed at analyzing the energy consumption and $CO_2$ emission in building life cycle, using the life cycle assessment and application of the example in apartment housing. This study shows that the maintenance and the production of building materials stage shares most of the amount of energy consumption and $CO_2$ emission and therefore plays an important role to planning the building in terms of the life cycle. Second, the other stages brings about a very small amount. It is important to decide the building shape and contents to mitigate the environmental affect in terms of material, volume, the pattern of the energy use and others.

  • PDF

The Changes of Energy Nutrient Intake, Frequently Consumed Dishes and Staple Food Consumption -Based on the First to the Forth(1998~2008) Korea National Health and Nutrition Examination Survey(KNHANES I~IV-2)- (한국인의 에너지 영양소의 섭취와 다소비 음식 및 주식류 섭취비율의 추이 -I기~IV기-2차(1998~2008) 국민건강영양조사 자료를 중심으로-)

  • Ahn, Eun-Mi;Kang, Min-Sook;Gong, Jung-Eun;Choe, Jung-Sook;Park, Young-Hee;Lee, Jin-Young;Kim, Haeng-Ran
    • The Korean Journal of Community Living Science
    • /
    • v.22 no.4
    • /
    • pp.669-678
    • /
    • 2011
  • The purpose of this study were to analyze the staple food consumption trend of Koreans using KNHANES(Korea National Health and Nutrition Examination Survey) data. Nutrient intake of 38,840 participants of 1998~2008 KNHANES, over 6 year old were analyzed. For the analysis of major staple food intakes, twenty four hour recall data was used. The results were analyzed by SAS Program, as follows. Despite westernized diet, ranking in the primary energy source of food showed similar patterns. But total calory intake was reduced over the past 11 years and percentage of carbohydrate intake was increased. Relative proportions of protein and fat intake was reduced. The major carbohydrate and protein source of Koreans was rice and grains. Pork and ramen were the major fat source food. Although intake levels were different by gender, age and areas, carbohydrate of rice was primary source of energy in Korea.

A Study on the Application Possibility of Green Building Design Process based on Building Information Modeling(BIM) for Sustainable Architecture (지속가능한 건축을 위한 BIM기반 친환경건축 설계프로세스 적용가능성에 관한 연구)

  • Kim, Mi-Kyoung;Jang, Won-Jun;Choi, Hyun-Ah;Jun, Han-Jong
    • KIEAE Journal
    • /
    • v.11 no.2
    • /
    • pp.113-122
    • /
    • 2011
  • About 30% of the total annual energy consumption on the earth is used in the architectural activities, including construction, maintenance management, and demonstration of a building. Also, 40% of the natural resource consumption, 50% of $CO_2$ emissions, and 20%~50% of industrial waste emissions are produced from a building. Unfortunately, the percentage of its energy consumption is staidly increasing year by year, about 8% every year, and it recently causes a sustainable architectural concept to come to the fore globally. Indeed, the importance of the sustainable architecture is increasingly becoming a worldwide trend. BIM(Building Information Modeling) is considered a new paradigm and a powerful method in building design, construction and maintenance. BIM has characteristics similar to a building's systems. All of the components in a model have a parametric relationship to each other. Understanding and capitalizing on these interrelationships typically takes numerous iterations that span multiple projects. Optimizing the integrated strategies and technologies for a high-performance, sustainable design requires a continual look at understanding how they work together to deliver the best potential. Throughout all of these concepts, we are going to be using a variety of tools that revolve around a BIM model. Some of the tools will require a heavier use of BIM than others, but all of them will utilize the model geometry you've created as part of your design. This study presents importance and validity of energy performance analyzation in the pre-design phase for the sustainable architecture with the support of Building Information Modeling (BIM) technology.

A Basic Study on the Method of Building Energy Management Based on Digital Space Modeling and Ubiquitous IT Technology (디지털 공간모델링 기법과 유비쿼터스 IT 기술을 접목한 빌딩 에너지 관리방법에 관한 기초연구)

  • Park, Yong-Jun;Park, Nam-Hee;Choi, Jin-Won
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2009.04a
    • /
    • pp.181-186
    • /
    • 2009
  • Recently, the consuming efficiency of energy and natural resources has been a hot issue because of the continuous increasing of energy consumption and soaring of international oil prices. We tried to seek an action plan for the government's new paradigm 'Low-Carbon, Green Growth' by consuming energy efficiently and improving in energy management based on ubiquitous IT technologies. In this study, the library survey method is adopted for this study and IP-USN(internet protocol based ubiquitous sensor network) is considered as a core technology among various ubiquitous IT technologies. The purpose of this study is to deliver a method of energy management through integrating the context information gathered from sensors with digital space models and visualizing them together. The details are to survey the technologies of digital space modeling, USN based monitoring, building energy management and to integrate these technologies all together. This study will contribute to the enhancement of efficient building energy management by grasping the accurate situation of energy consuming in the building in realtime and minimizing unnecessary energy wastes.

  • PDF

Modelling the Estimation Process of Greenhouse Gas Emission in the Construction of Buildings

  • Yi, Kyoo-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.3
    • /
    • pp.266-274
    • /
    • 2012
  • The annual expenditure on diesel oil and heavy oil in the construction sector is the second largest among all industrial sectors. To meet the government's greenhouse gas reduction targets, the construction sector has until 2020 to cut its emissions by 7.1%. Unlike other high-tech industrial sectors, the construction sector has a fairly limited scope for technological improvements, which hampers its capacity to achieve the reduction target. To reduce emissions, it is necessary to establish an energy and emissions strategy at the project planning stage, and energy use and the resulting emissions must be estimated. This research aims to establish an estimation methodology for greenhouse gas emissions at the planning stage of construction projects. To estimate the project-related emissions, this research indentified the relationship among the types of emissions in a cross-sectional matrix form, and then provided a set of calculation methods for total project related emissions.

A Study on the Optimum Application Method of Solar Thermal System to reduce Thermal Load and Carbon Emission in Apartment Building (공동주택의 열부하 및 탄소배출량 저감을 위한 태양열시스템의 최적 적용 방안 연구)

  • Yoon, Jong-Ho;Sim, Se-Ra;Shin, U-Cheul;Baek, Nam-Chun;Kwak, Hee-Yul
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.2
    • /
    • pp.135-142
    • /
    • 2011
  • Architectural market in the world is trying to develop Zero Carbon Buildng that doesn"t use fossil fuel. Residential building that thermal load such as heating and domestic hot water is over 70% in energy consumption is easy to make Zero Carbon Building compared with office building that is mainly electric load. So, As a preliminary for analyzing the effect of Solar thermal system in the building, an annual energy consumption of residential building and total heat loads are calculated. Based on this result, three alternatives of solar thermal system for hot water and heating are applied in the building while installation area is increasing. Solar thermal system is applied on balcony and roof of apartment building as the way to reduce thermal load. In the first case that solar thermal system for hot water is applied on the balcony, optimum installation area is $56m^2$. And you could install $40m^2$ of this system in the roof that angle is $30^{\circ}$. In the second case of solar thermal system for heating and hot water, you can install $40m^2$ on the roof. As a result of economic evaluation, the most economical application method is to install $40m^2$ of solar thermal system for only hot water on the roof of the building. At that time, you can payback the initial investing cost within 10 years. And carbon emission of this method can be reduced until about 4 ton per year.

A study on the accommodation of common LED to shipboard (육상용 LED 램프의 선박 적응력에 관한 연구)

  • Jeong, Ji-Hyun;Park, Hwan-Chul;Kim, Yong-Joo;Seo, Sang-Do;Han, Seung-Jae;Kim, Min-Sok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.46 no.4
    • /
    • pp.503-508
    • /
    • 2010
  • Common LED (Light Emitting Diode) lamp has many advantages to compare with fluorescent lamp, long life and no pollution matter like the mercury. The LED lamp is a good light source especially for shipboard lighting because of its compact structure which prevents explosion and shock. Also, low maintenance cost is expected due to its longer life time in comparison with conventional lamps. The LED lamp, however, need some estimates that change of voltage and frequency, vibration, moisture on board to definite accommodation of the LED lamp to shipboard. The purpose of this study is to compare physical properties of a fluorescent lamp with one of the common LED lamp so as to analyze accommodation of common LED lamp on board. This study was carried out in two stages. First, temperature, humidity of illumination, voltage, electric current, frequency and electric power were measured by using experimental equipments. Second, a comparative analysis of consumption electric power, annual oil charge, annual CO2 emission and lamp life time, etc of the fluorescent lamp and common LED one was made. As a result of the study, the consumption electric power of fluorescent lamp was 50% higher than one of the common LED lamp. As a result of measuring life time, it was found that life time of common LED lamp was more about 3.5 fold than one of the fluorescent lamp. Considering these results, it's thought that common LED lamp is verified that energy saving is possible and using is possible as substitute for fluorescent lamp on board.

Economic Analysis of Heat Pump System through Actual Operation (히트 펌프 냉난방 시스템의 실사용을 통한 경제성 분석)

  • Shin, Gyu-Won;Kim, Gil-Tae;Joo, Ho-Young;Lee, Jae-Keun
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.921-926
    • /
    • 2006
  • The present study has been conducted economic analysis through actual operation of EHP and GHP which are installed at the same building of an university Cost items, such as initial cost, annual energy cost and maintenance cost of each system are considered to analyze LCC and economical efficiency is compared. The initial cost is considered on the basis of actual costs, and annual energy cost is converted into the cost after measuring electricity and gas consumption a day. LCC applied present value method is used to assess economical efficiency of both them. Variables used to LCC analysis are electricity cost escalation rate, natural gas cost escalation rate, interest rate, and service lives and when each of them are 4%, 2%, 8%, and 20 years, results of analysis short that EHP(148,257,306 won) is 8.05%(12,981,990 won) more profitable than GHP(161,239,295 won).

  • PDF