• Title/Summary/Keyword: Annual change

Search Result 1,283, Processing Time 0.035 seconds

Regional Division of Korea by Precipitation Days and Annual Change Pattern (강수일과 그 연변화형에 의한 한국의 지역구분)

  • Park, Hyun-Wook
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.1-1
    • /
    • 1995
  • An attempt was made to study the subdivision of Korea by the annual amount and the annual change pattern of monthly precipitation days(that is one of the important elements of the precipitation characteristics), using the mean values for the years 1961-1990 at the 68 stations. The amplitudes of annual change were normalized and using these values, the principal component analysis was applied to determine the annual change patterns. The results show that they are expressed by the combinations of the three change patterns in almost whole regions of Korea. As a result,the annual change pattern of precipitation days in Korea is classified into 8 types from A to e,in detail, 36 types from A0 to e$\circled2$.And regional division of precipitation days in Korea is divided into 13 regions from I a to IIIC,into detail, 41 regions from I no to IIICl.

Regional Division of Korea by Precipitation Days and Annual Change Pattern (강수일과 그 연변화형에 의한 한국의 지역구분)

  • 박현욱
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.387-402
    • /
    • 1995
  • An attempt was made to study the subdivision of Korea by the annual amount and the annual change pattern of monthly precipitation days(that is one of the important elements of the precipitation characteristics), using the mean values for the years 1961-1990 at the 68 stations. The amplitudes of annual change were normalized and using these values, the principal component analysis was applied to determine the annual change patterns. The results show that they are expressed by the combinations of the three change patterns in almost whole regions of Korea. As a result, the annual change pattern of precipitation days in Korea is classified into 8 types from A to e, in detail, 36 types from A0 to e$\circled2$.And regional division of precipitation days in Korea is divided into 13 regions from I a to IIIC, into detail, 41 regions from I no to IIICl.

  • PDF

The Statistical Approaches on the Change Point Problem Precipitation in the Pusan Area (부산지방 강수량의 변화시점에 관한 통계적 접근)

  • 박종길;석경하
    • Journal of Environmental Science International
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 1998
  • This paper alms to estimate the change point of the precipitation in Pusan area using the several statistical approaches. The data concerning rainfall are extracted from the annual climatological report and monthly weather report issued by the Korean Meteorological Administration. The average annual precipitation at Pusan is 1471.6 mm, with a standard deviation of 406.0 mm, less than the normal(1486.0 mm). The trend of the annual precipitation is continuously decreasing after 1991 as a change point. And the statistical tests such as t-test and Wilcoxon rank sum test reveals that the average annual precipitation of after 1991 is less than that of before 1991 at 10% significance level. And the mean gnu성 precipitation In Kyongnam districts is also continuously decreasing after 1991 same as Pusan.

  • PDF

Change-Point in the Recent (1976-2005) Precipitation over South Korea (우리나라에서 최근 (1976-2005) 강수의 변화 시점)

  • Kim, Chansoo;Suh, Myoung-Seok
    • Atmosphere
    • /
    • v.18 no.2
    • /
    • pp.111-120
    • /
    • 2008
  • This study presents a change-point in the 30 years (1976-2005) time series of the annual and the heavy precipitation characteristics (amount, days and intensity) averaged over South Korea using Bayesian approach. The criterion for the heavy precipitation used in this study is 80 mm/day. Using non-informative priors, the exact Bayes estimators of parameters and unknown change-point are obtained. Also, the posterior probability and 90% highest posterior density credible intervals for the mean differences between before and after the change-point are examined. The results show that a single change-point in the precipitation intensity and the heavy precipitation characteristics has occurred around 1996. As the results, the precipitation intensity and heavy precipitation characteristics have clearly increased after the change-point. However, the annual precipitation amount and days show a statistically insignificant single change-point model. These results are consistent with earlier works based on a simple linear regression model.

Climate Change Assessment on Air Temperature over Han River and Imjin River Watersheds in Korea

  • Jang, S.;Hwang, M.
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.740-741
    • /
    • 2015
  • the downscaled air temperature data over study region for the projected 2001 - 2099 period were then ensemble averaged, and the ensemble averages of 6 realizations were compared against the corresponding historical downscaled data for the 1961 - 2000 period in order to assess the impact of climate change on air temperature over study region by graphical, spatial and statistical methods. In order to evaluate the seasonal trends under future climate change conditions, the simulated annual, annual DJF (December-January-February), and annual JJA (June-July-August) mean air temperature for 5 watersheds during historical and future periods were evaluated. From the results, it is clear that there is a rising trend in the projected air temperature and future air temperature would be warmer by about 3 degrees Celsius toward the end of 21st century if the ensemble projections of air temperature become true. Spatial comparison of 30-year average annual mean air temperature between historical period (1970 - 1999) and ensemble average of 6-realization shows that air temperature is warmer toward end of 21st century compared to historical period.

  • PDF

Reference evapotranspiration estimates based on meteorological variables over Korean agro-climatic zones for rice field (남한지역의 논 농업기후지대에 대한 기상자료 기반의 기준 증발산량 추정)

  • Jung, Myung-Pyo;Hur, Jina;Shim, Kyo-Moon;Kim, Yongseok;Kang, Kee-Kyung;Choi, Soon-Kun;Lee, Byeong-Tae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.229-237
    • /
    • 2019
  • This study was conducted to estimate annual reference evapotranspiration (ET0) for the agro-climatic zones for rice paddy fields in South Korea between 1980 and 2015. The daily ET0 was estimated by applying the Penman-Monteith method to meteorological data from 61 weather stations provided by Korean Meteorological Administration (KMA). The average of annual ET0 from 1980 to 2015 was 1334.1±33.89 mm. The ET0 was the highest at the Southern Coastal Zone due to their higher air temperature and lower relative humidity. The ET0 had significantly increased with 2.81 mm/yr for the whole zones over 36 years. However, the change rate of it was different among agro-climatic zones. The annual ET0 highly increased in central zones and eastern coastal zones. In terms of correlation coefficient, the temporal change of the annual ET0 was closely related to variations of four meteorological factors (i.e., mean, minimum temperatures, sunshine duration, and relative humidity). The results demonstrated that whole Korean agro-climatic zones have been undergoing a significant change in the annual ET0 for the last 36 years. Understanding the spatial pattern and the long-term variation of the annual ET0 associated with global warming would be useful to improve crop and water resource managements at each agro-climatic zone of South Korea.

Effects of atmospheric environmental changes on annual ring growth of Cryptomeria japonica in Southern Korea

  • Luong, Thi-Hoan;Jang, Kyoung-Soo;Choi, Woo-Jung;Lee, Kye-Han
    • Journal of Ecology and Environment
    • /
    • v.36 no.1
    • /
    • pp.31-38
    • /
    • 2013
  • Annual ring formation is considered a source of information to investigate the effects of environmental changes caused by temperature, air pollution, and acid rain on tree growth. A comparative investigation of annual ring growth of Cryptomeria japonica in relation to environmental changes was conducted at two sites in southern Korea (Haenam and Jangseong). Three wood disks from each site were collected from stems at breast height and annual ring growth was analyzed. Annual ring area at two sites increased over time (p > 0.05). Tree ring growth rate in Jangseong was higher than that in Haenam. Annual ring area increment in Jangseong was more strongly correlated with environmental variables than that in Haenam; annual ring growth increased with increasing temperature (p < 0.01) and a positive effect of $NO_2$ concentration on annual ring area (p < 0.05) could be attributed to nitrogen deposition in Jangseong. The correlation of annual ring growth increased with decreasing $SO_2$ and $CO_2$ concentrations (p < 0.01) in Jangseong. Variation in annual growth rings in Jangseong could be associated with temperature changes and N deposition. In Haenam, annual ring growth was correlated with $SO_2$ concentration (p < 0.01), and there was a negative relationship between precipitation pH and annual ring area (p < 0.01) which may reflect changes in nutrient cycles due to the acid rain. Therefore, the combined effects of increased $CO_2$, N deposition, and temperature on tree ring growth in Jangseong may be linked to soil acidification in this forest ecosystem. The interactions between air pollution ($SO_2$) and precipitation pH in Haenam may affect tree growth and may change nutrient cycles in this site. These results suggested that annual tree ring growth in Jangseong was more correlated with environmental variables than that in Haenam. However, the further growth of C. japonica forest at two sites is at risk from the long-term effects of acid deposition from fossil fuel combustion.

Change-point and Change Pattern of Precipitation Characteristics using Bayesian Method over South Korea from 1954 to 2007 (베이지안 방법을 이용한 우리나라 강수특성(1954-2007)의 변화시점 및 변화유형 분석)

  • Kim, Chansoo;Suh, Myoung-Seok
    • Atmosphere
    • /
    • v.19 no.2
    • /
    • pp.199-211
    • /
    • 2009
  • In this paper, we examine the multiple change-point and change pattern in the 54 years (1954-2007) time series of the annual and the heavy precipitation characteristics (amount, days and intensity) averaged over South Korea. A Bayesian approach is used for detecting of mean and/or variance changes in a sequence of independent univariate normal observations. Using non-informative priors for the parameters, the Bayesian model selection is performed by the posterior probability through the intrinsic Bayes factor of Berger and Pericchi (1996). To investigate the significance of the changes in the precipitation characteristics between before and after the change-point, the posterior probability and 90% highest posterior density credible intervals are examined. The results showed that no significant changes have occurred in the annual precipitation characteristics (amount, days and intensity) and the heavy precipitation intensity. On the other hand, a statistically significant single change has occurred around 1996 or 1997 in the heavy precipitation days and amount. The heavy precipitation amount and days have increased after the change-point but no changes in the variances.

Change the Annual Amplitude of Sea Surface Temperature due to Climate Change in a Recent Decade around the Korean Peninsula

  • Han, In-Seong;Lee, Joon-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.3
    • /
    • pp.233-241
    • /
    • 2020
  • We examined long-term variations in sea surface temperature (SST) and annual amplitudes of SST around the Korean Peninsula. Two SST data sets with data periods of approximately 51 years and longer than 100 years, respectively, were obtained from the National Institute of Fisheries Science and Japan Meteorological Agency. SST of Korean waters clearly increased during last 51 years (1968-2018), which was 2.5 times higher than the global trend. This significant increasing trend was caused by the dominant increasing SST trend during winter. However, a negative and positive SST anomaly frequently appeared during winter and summer, respectively, in a recent decade. These features of seasonal SST variation have changed the annual amplitude of SST, and resulted in a drastically increasing trend after 2009. Using the longer SST data set, it was revealed that the decreasing SST trend in winter began in the 2000s and the increasing SST trend in summer bagan in the 1990s. During a recent decade, there was a distinctive SST increase in summer, whereas a clear decrease in winter. In summary, the annual amplitude of SST around the Korean Peninsula significantly changed from a decreasing trend to an increasing trend during a recent decade.

The Recent Climatic Characteristic and Change in the Republic of Korea based on the New Normals (1991~2020) (신평년(1991~2020년)에 기반한 우리나라 최근 기후특성과 변화에 관한 연구)

  • Hongjun Choi;Jeongyong Kim;Youngeun Choi;Inhye Hur;Taemin Lee;Sojung Kim;Sookjoo Min;Doyoung Lee;Dasom Choi;Hyun Min Sung;Jaeil Kwon
    • Atmosphere
    • /
    • v.33 no.5
    • /
    • pp.477-492
    • /
    • 2023
  • Based on the new climate normals (1991~2020), annual mean, maximum and minimum temperature is 12.5℃, 18.2℃, and 7.7℃, respectively while annual precipitation is 1,331.7 mm, the annual mean wind speed is 2.0 m s-1, and the relative humidity is 67.8% in the Republic of Korea. Compared to 1981~2010 normal, annual mean temperature increased by 0.2℃, maximum and minimum temperatures increased by 0.3℃, while the amount of precipitation (0.7%) and relative humidity (1.1%) decreased. There was no distinct change in annual mean wind speed. The spatial range of the annual mean temperature in the new normals is large from 7.1 to 16.9℃. Annual precipitation showed a high regional variability, ranging from 787.3 to 2,030.0 mm. The annual mean relative humidity decreased at most weather stations due to the rise in temperature, and the annual mean wind speed did not show any distinct difference between the new and old normals. With the addition of a warmer decade (2011~2020), temperatures all increased consistently and in particular, the increase in the maximum temperature, which had not significantly changed in previous decades, was evident. The increasing trend of annual and summer precipitation by the 2010s has disappeared in the new normals. Among extreme climate indices, MxT30 (Daily maximum temperature ≥ 33℃ days), MnT25 (Daily minimum temperature ≥ 25℃ days), and PH30 (1 hour maximum precipitation ≥ 30 mm days) increased while MnT-10 (Daily minimum temperature < -10℃ days) and W13.9 (Daily maximum wind speed ≥ 13.9 m/s days) decreased at a statistically significant level. It is thought that a detailed study on the different trends of climate elements and extreme climate indices by region should be conducted in the future.