• Title/Summary/Keyword: Annual Ring width

Search Result 52, Processing Time 0.017 seconds

Community Ecological Study on the Quercus acuta Forests in Bogildo-Island (보길도(甫吉島) 붉가시나무림(林)의 군락생태학적(群落生態學的) 연구(硏究))

  • Kim, Chong-Young;Lee, Jeong-Seok;Oh, Kwang-In;Jang, Seok-Ki;Park, Jin-Hong
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.5
    • /
    • pp.618-629
    • /
    • 2000
  • This study was carried out to investigate ecological niche of Quercus acuta communities in Bogildo-island from July to October, 1998. This island is occupied by a subtropical evergreen broad-leaved forests. The study on community ecology of Q. acuta, mostly dominant species of subtropical forests, is very important for successful forest management. Sampling areas were selected in 16 quadrats, dominated by Q. acuta to examine the vegetation characteristics(plant identification, D.B.H.) and environmental elements (microtopography, altitude, slope degree, aspect, illumination and soil physicochemical properties). On the basis of data from field surveys, importance values were calculated for the dominance of Q. acuta and volume growth was analyzed by tree ring widths. The results obtained were as follows ; 1. The lists of vascular plants in the investigations were identified as 54 families, 91 genera, 113 species, 9 varieties, 1 formae. It appeared that 45 kinds were evergreen, 6 kinds(Camellia japonica, Ligustrum japonicum, Eurya japonica, Smilax china, Trachelospermum asiaticum var. intermedium, Carex lanceolata) were commonly observed in all plots and 5 species(Cinnamomum japonicum, Ardisia japonica, Cymbidium goeringii, Dryopteris bissetiana, Viburnum erosum) were most highly observed in all plots(over 80%). 2. The dominating species per strata were, Quercus acuta, Castanopsis cuspidata sp. Quercus salicina, Pinus thunbergii, Prunus sargentii in tree layer, Camellia Japonica, Ligustrum japonicum, Quercus acuta, Eurya japonica, Castanopsis cuspidata sp. in subtree layer, Camellia japonica, Ligustrum japonicum, Smilax china, Cinnamomum japonicum, Viburnum erosum in shrub layer and Trachelospermum asiaticum var. intermedium, Ardisia japonica, Carex lanceolata, Camellia japonica(seedlings), Quercus acuta(seedlings) in herb layer, all in descending orders. 3. Quercus acuta could be suggested as shade intolerant tree, considering the distribution in southern, western, nothern and eastern slopes in the descending orders. 4. Mean relative illumination in the forest is 0.89 % and it is relatively low in brightness. 5. Sustainment of Quercus acuta community couldn't be confirmed by judging from their reverse J curve in even-aged forest, as shown in D.B.H. distribution analysis. 6. The result of annual ring width analysis(mean ; 2.44 mm) showed three stages, such as a gentle increasing(1~12 year ; 2.04 mm), a relatively steep increasing(13~22 year ; 2.95 mm) and decreasing or stagnating(23 year after ; 2.41 mm).

  • PDF

Scanning Electron Microscopic Studies on the Features of Compression Wood, Opposite Wood, and Side Wood in Branch of Pitch Pine(Pinus rigida Miller) (리기다소나무 (Pinus rigida Miller) 지재(枝材)의 압축이상재(壓縮異常材), 대응재(對應材) 및 측면재(側面材) 특성(特性)에 관한 주사전자현미경적(走査電子顯微鏡的)인 연구(硏究))

  • Eom, Young-Geun;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.3-18
    • /
    • 1985
  • In Korea, a study on the anatomical features of pitch pine (pinus rigida Miller) branch wood through photo-microscopical method was reported in 1972 by Lee. Therefore, as a further study of Lee's on the anatomical features in branch wood of pinus rigida miller that grows in Korea, compression wood, opposite wood, and side wood were selected and treated for the purpose of comparing their structures revealed on cross and radial surface through scanning electron microscope in this study. The obtained results in this study were summarized as follows; 1. The trachied transition from earlywood to late wood is very gradual and the tracheids are nearly regular in both arrangement and size in compression wood but this transition in opposite wood and side wood is abrupt and the tracheids in opposite wood and side wood are less regular than those in compression wood. Also, the annual ring width of opposite wood is narrower than that of compression wood or side wood and the rays revealed on cross surface of side wood are more distinct than compression wood and opposite wood rays. 2. The tracheids of compression wood show roundish trends especially in earlywood but those of opposite wood and side wood show some angular trends. And intercellular space, helical cavity, and spiral check are present in both earlywood and latewood of compression wood but not present in opposite wood and side wood irrespective of earlywood and latewood. 3. The wall thickness of latewood tracheid is similar to that of earlywood tracheid in compression wood whereas the wall thickness of latewood tracheid is by far thicker than that of earlywood tracheid in opposite wood and side wood and the S3 layer of secondary wall is lack in compression wood tracheid unlike opposite wood and side wood tracheid. 4. The tracheids in compression wood are often distorted at their tips unlike those in opposite wood and side wood and the bordered pit in compression wood tracheid is located at the bottom of helical groove unlike that in opposite wood and side wood tracheid. 5. The bordered pits in radial wall of opposite wood and side wood tracheids are oval in shape but those of compression wood tracheids show some modified oval shape. 6. In earlywood of side wood, the small apertures of cross-field pits are roundish triangle to rectangle and the large one are fenestriform through the coalition of two small ones. However, the small apertures of cross-field pits are upright oval and the large ones are procumbent oval shape in earlywood of opposite wood and the apertures of cross-field pits in compression wood are tilted bifacial convex lens shape in earlywood and slit in late wood because of the border on tracheid side.

  • PDF