Annotation is used for inscribing personal opinion, explanation, and summary. Various methods for processing annotation efficiently in digital document environments are being studied. However, previous studies placed much emphasis on function of annotation, so either they did not support Intuitive paper-based input interface or the systems that support it still have low reusability problems, because relation between annotation and original document are not explicit. Thus, in our study, we define context-based annotation modeling for digital document environments, and suggest annotation interface based on the modeling. To design annotation model, we define annotation types, context information of document, and relationship between annotation and original document. Also, a system based on the modeling is implemented to support pen-based annotation and annotation DTD. As a result, unlike previous studies, it is possible to explicitly define context-based annotation in pen-based input environments. We present various functions using the modeling and various possibilities of application.
Proceedings of the Korea Multimedia Society Conference
/
2001.11a
/
pp.607-610
/
2001
기존의 전자책 환경에서 종이책과 구별되는 특징은 네트웍을 통한 저자와 독자, 출판사간의 인터랙티브(interactive)한 정보 교환이 가능하다는 점이다. 이러한 교환은 기존의 종이책에서 사용하는 Annotation을 이용하면 가능하다. Annotation이란 원본 문서에 부가적으로 추가되는 정보를 의미한다. 그러므로 Annotation과 원본 문서는 밀접한 관계를 갖는데 기존의 Annotation 모델링은 원본 문서를 고려하지 않고 Annotation만을 별개로 모델링하였다. 이에 본 논문에서는 Annotation을 보다 효과적으로 활용하기 위하여 annotation과 원본 문서를 동시에 표현하는 모델링에 대해 제안한다. 그리고 본 모델링은 전자책 표준인 EBKS에 기반하며, 모델링 결과를 웹 자원을 기술하는 표준인 RDF를 이용하여 표현한다.
Proceedings of the Korea Multimedia Society Conference
/
2001.11a
/
pp.602-606
/
2001
전자책은 기존 종이 문서에 비하여 다양한 기능 및 장점을 제공할 수 있기 때문에 현재 다양한 연구 및 서비스가 제공되고 있다. 또한 전자책 환경에서의 정보 공유 및 검색과 같은 다양한 활용을 위해서는 반드시 Annotation 지원이 가능하여야 하며 이에 대한 정확한 Annotation 정의가 요구된다. Annotation이란 일반적으로 문서의 주제 및 내용에 관한 해설, 설명, 그리고 강조를 목적으로 추가되는 문장 또는 텍스트를 의미한다. 그러나 기존 전자책 환경에서의 Annotation과 관련된 연구에서는 이에 대한 심도있는 연구 결과가 미비한 실정이다. 이에 본 연구에서는 전자책 환경을 위한 Context 기반 Annotation Modeling을 정의하고 이를 활용한 인터페이스를 제안한다. 현재 전자책 환경은 대부분 XML에 기반하고 있으며 이에 본 논문에서는 구조정보와 컨텐츠, 그리고 Annotation간의 관계 및 이를 활용하기 위한 모델링을 제시한다. 또한 모델링 정보를 이용한 다양한 장점 및 환용이 가능한 시스템을 구현하였다. 그 결과 본 연구에서는 기존 연구와는 달리 Context 기반 Annotation의 정확한 정의가 가능하며 이를 활용한 다양한 기능을 제공하는 동시에 앞으로의 응용 가능성을 제시하고 있다.
This paper proposed context based annotation model and annotation ambiguity correction methods. The proposed model provides various annotation types, semantic models, and pen-based free drawing interface. Annotation correction method that is specifically based on the context which includes various textual and structure information between free-form marking and annotation. Also, interface for XML environment using the proposed model and correction methods is proposed and possibilities of application is looked at. The results from the implementation of the proposed method show that the annotated areas included in the free-form marking information are more accurate, achieving more accurate exchange results amongst multiple users in a heterogeneous document environment
Journal of The Korean Association of Information Education
/
v.10
no.2
/
pp.219-226
/
2006
For the accurate creation of annotation information in a free-form annotation environment, the ambiguity that arises in the analysis stage between the geometric information and annotations needs to be resolved. Therefore, this This paper identifies, analyzes, and proposes presents solutions methods for the ambiguity that can occur between free-form marking and various contexts in XML-based annotation environment. The proposed method is based on context which includes various textual and structure information between free-form marking and annotated part. The proposed method show that the annotated portions areas included in the free-form marking information are more accurate, achieving more accurate exchange results amongst multiple users in a heterogeneous document environment. This study can be effectively applied to eLearning, Cyber-Class, and IETM
In the process of creating drawings based on Building Information Modeling (BIM), automatically generated annotations can cause interference issues depending on the drawing type. This study aims to develop an algorithm for repositioning annotations using genetic algorithms to minimize such interferences. To achieve this, the Application Programming Interface (API) of BIM software was used to analyze data extractable from BIM drawing files. The process involved defining drawing data related to annotation repositioning, preprocessing this data, and deriving optimal placement coordinates for the annotations. Furthermore, applying the developed algorithm to the preliminary design drawings of small and medium-sized neighborhood facilities resulted in approximately a 95.37% decrease in annotation interference, indicating that the proposed algorithm can significantly enhance productivity in BIM-based drawing tasks.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.7
no.5
/
pp.1252-1271
/
2013
Automatic image annotation has become an increasingly important research topic owing to its key role in image retrieval. Simultaneously, it is highly challenging when facing to large-scale dataset with large variance. Practical approaches generally rely on similarity measures defined over images and multi-label prediction methods. More specifically, those approaches usually 1) leverage similarity measures predefined or learned by optimizing for ranking or annotation, which might be not adaptive enough to datasets; and 2) predict labels separately without taking the correlation of labels into account. In this paper, we propose a method for image annotation through collaborative similarity metric learning from dataset and modeling the label correlation of the dataset. The similarity metric is learned by simultaneously optimizing the 1) image ranking using structural SVM (SSVM), and 2) image annotation using correlated label propagation, with respect to the similarity metric. The learned similarity metric, fully exploiting the available information of datasets, would improve the two collaborative components, ranking and annotation, and sequentially the retrieval system itself. We evaluated the proposed method on Corel5k, Corel30k and EspGame databases. The results for annotation and retrieval show the competitive performance of the proposed method.
In this paper, we propose a semi-automatic modeling approach of ontology to annotate VOD to realize the IPTV's intelligent searching. The ontology is made by combining partial tree that extracts hypernym, hyponym, and synonym of keywords related to a service domain from WordNet. Further, we add to the partial tree new keywords that are undefined in WordNet, such as foreign words and words written in Chinese characters. The ontology consists of two parts: generic hierarchy and specific hierarchy. The former is the semantic model of vocabularies such as keywords and contents of keywords. They are defined as classes including property restrictions in the ontology. The latter is generated using the reasoning technique by inferring contents of keywords based on the generic hierarchy. An annotation generates metadata (i.e., contents and genre) of VOD based on the specific hierarchy. The generic hierarchy can be applied to other domains, and the specific hierarchy helps modeling the ontology to fit the service domain. This approach is proved as good to generate metadata independent of any specific domain. As a result, the proposed method produced around 82% precision with 2,400 VOD annotation test data.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.12
no.1
/
pp.392-412
/
2018
Due to the semantic gap problem across different modalities, automatically retrieval from multimedia information still faces a main challenge. It is desirable to provide an effective joint model to bridge the gap and organize the relationships between them. In this work, we develop a deep image annotation and classification by fusing multi-modal semantic topics (DAC_mmst) model, which has the capacity for finding visual and non-visual topics by jointly modeling the image and loosely related text for deep image annotation while simultaneously learning and predicting the class label. More specifically, DAC_mmst depends on a non-parametric Bayesian model for estimating the best number of visual topics that can perfectly explain the image. To evaluate the effectiveness of our proposed algorithm, we collect a real-world dataset to conduct various experiments. The experimental results show our proposed DAC_mmst performs favorably in perplexity, image annotation and classification accuracy, comparing to several state-of-the-art methods.
Mazumder, Lincon;Hasan, Mehedi;Rus’d, Ahmed Abu;Islam, Mohammad Ariful
Genomics & Informatics
/
v.19
no.4
/
pp.43.1-43.12
/
2021
Campylobacter jejuni is one of the most prevalent organisms associated with foodborne illness across the globe causing campylobacteriosis and gastritis. Many proteins of C. jejuni are still unidentified. The purpose of this study was to determine the structure and function of a non-annotated hypothetical protein (HP) from C. jejuni. A number of properties like physiochemical characteristics, 3D structure, and functional annotation of the HP (accession No. CAG2129885.1) were predicted using various bioinformatics tools followed by further validation and quality assessment. Moreover, the protein-protein interactions and active site were obtained from the STRING and CASTp server, respectively. The hypothesized protein possesses various characteristics including an acidic pH, thermal stability, water solubility, and cytoplasmic distribution. While alpha-helix and random coil structures are the most prominent structural components of this protein, most of it is formed of helices and coils. Along with expected quality, the 3D model has been found to be novel. This study has identified the potential role of the HP in 2-methylcitric acid cycle and propionate catabolism. Furthermore, protein-protein interactions revealed several significant functional partners. The in-silico characterization of this protein will assist to understand its molecular mechanism of action better. The methodology of this study would also serve as the basis for additional research into proteomic and genomic data for functional potential identification.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.