• Title/Summary/Keyword: Annexin I

Search Result 42, Processing Time 0.029 seconds

Annexin I의 구조와 결합에 관한 분광학적 연구

  • 이봉진;방근수;이연희;이태우;나도선
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1994년도 춘계학술대회 and 제3회 신약개발 연구발표회
    • /
    • pp.263-263
    • /
    • 1994
  • Annexin I is a member of the in family of calcium dependent phospholipid banding proteins and is an in vitro phospholipase $A_2$ (PLA$_2$) inhibitor. The mechanism of PLA$_2$ inhibition by annexin I is still ambiguous. The structure of annexin I was studied at the atomic level by using nuclear magnetic resonance (NMR), circular dichrotsm (CD) and fluorescence spectroscopy. Recombinant human annexin I and N-terminally truncated annexin I (1-31 deleted: d-annexin I) were purified and their NMR spectra were compared. The NMR spectra of the two were similar. When $Ca^{2+}$ ion added to annexin I ad d-annexin I, peak broadening occurred, but no significant spectroscopic change was observed. When porcine pancreatic PLA$_2$ was added to deuterium labeled annexin I, an interaction of annexin I with PLA$_2$ was observed as indicated by the disappearance and shift of several peaks in the NMR spectrum. This result supports a protein-protein interaction mechanism for PLA$_2$ inhibition by annexin I.I.

  • PDF

ATP and GTP Hydrolytic Function of N-terminally Deleted Annexin I

  • Hyun, Young-Lan;Park, Young-Min;Na, Doe-Sun
    • BMB Reports
    • /
    • 제33권4호
    • /
    • pp.289-293
    • /
    • 2000
  • Annexin I is a 37 kDa member of the annexin family of calcium-dependent phospholipid binding proteins. Annexin I plays regulatory roles in various cellular processes including cell proliferation and differentiation. Recently we found that annexin I is a heat shock protein (HSP) and displays a chaperone-like function. In this paper we investigated the function of annexin I as an ATPase using 1 to 32 amino acids deleted annexin I (${\Delta}-annexin$ I). ${\Delta}-Annexin$ I hydrolyzed ATP as determined by thin layer chromatography. The ability of ATP hydrolysis was inhibited by ADP, GTP and GDP, but not by the AMP, GMP and cAMP. In view of the ATP hydrolyzing function of HSP, the results support the function of annexin I as a HSP.

  • PDF

Conformational Change of Human Annexin I by the Binding of $Ca^{2+}$, ATP and cAMP

  • Lee, Bong-Jin;An, Hee-Chul;Lee, Yeon-Hee;Han, Hee-Yong;Na, Doe-Sun
    • 한국자기공명학회논문지
    • /
    • 제2권2호
    • /
    • pp.141-151
    • /
    • 1998
  • Human annexin I is a member of annexin family of calcium dependent phospholipid binding proteins, which have been implicated in various physiological roles including phospholipase A2(PLA2) inhibition, membrane fusion and calcium channel activity. In this work, the structure of N-terminally truncated human annexin I ({{{{ DELTA }}-annexin I) and its interactions with Ca2+, ATP and cAMP were studied at atomic level by using nuclear magnetic resonance (NMR) spectroscopy. The effect of Ca2+ binding on the structure of {{{{ DELTA }}-annexin I was investigated. The addition of Ca2+ to {{{{ DELTA }}-annexin I caused some changes in 13C NMR spectra. Carbonyl carbon resonances of some histidines were significantly broadened by Ca2+ binding. However, in the case of methionine, phenylalanine, and tyrosin, small changes could be observed. We found that ATP and cAMP bind {{{{ DELTA }}-annexin I, and the binding ratio of ATP to {{{{ DELTA }}-annexin I is 1. These results are well consistent with the report that cAMP and ATP interact with annexin I, and affect the calcium channels formed by annexin I. Because {{{{ DELTA }}-annexin I is a large protein with 35 kDa molecular weight, site-specific (carbonyl-13C) labeling technique was used to study the interaction sites of {{{{ DELTA }}-annexin I with Ca2+. NMR study was focused on the carbonyl carbon resonances of tyrosine, phenylalanine, methionine and histidine residues of {{{{ DELTA }}-annexin I because the number of these amino acids is small in the amino acid sequence of {{{{ DELTA }}-annexin I.

  • PDF

NMR Studies on the Structure of Human Annexin I

  • Lee, Yeon-Hee;Han, Hee-yong;Oh, Jee-Young;Na, Doe-Sun;Lee, Bong-Jin
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1997년도 춘계학술대회
    • /
    • pp.86-86
    • /
    • 1997
  • Human annexin I is a member of annexin family of calcium dependent phospholipid binding proteins, which have been implicated in various physiological roles including phospholipase A$_2$ (PLA$_2$) inhibition, membrane fusion and calcium channel activity. In this work, the structure of N-terminally truncated human annexin I (Δ-annexin I) and its interactions with Ca$\^$2+/, ATP and cAMP were studied at atomic level by using $^1$H, $\^$15/N, $\^$l3/C NMR (nuclear magnetic resonance) spectroscopy. The effect of Ca$\^$2+/ binding on the structure of Δ-annexin I was investigated, and compared with that of Mg$\^$2+/ binding. The addition of Ca$\^$2+/ to Δ-annexin I caused some changes in the high field and low field regions of $^1$H NMR spectra. Whereas, upon addition of Mg$\^$2+/ to Δ-annexin I, almost no change could be observed. Also we found that the binding ratio of ATP to Δ-annexin I is 1. Because Δ-annexin I is a large protein with 35 kDa molecular weight, site-specific (carbonyl-$\^$l3/C, amide-$\^$15/N) labeling technique was used to determine the interaction sites of Δ-annexin I with Ca$\^$2+/ and ATP. Assignments of all the histidinyl carbonyl carbon resonances have been completed by using Δ-annexin I along with its specific 1,2-subdomain. The carbonyl carbon resonances originating from His52 and His246 of Δ-annexin I were significantly affected by Ca$\^$2+/ binding, and some Tyr and Phe resonances were also affected. The carbonyl carbon resonances originating from His52 is significantly affected by ATP binding, therefore His52 seems to be involved in the ATP binding site of Δ-annexin I.

  • PDF

Translocation of Annexin I to the Nucleus by Epidermal Growth Factor in A549 Cells

  • Rhee, Hae-Jin;Kim, Seung-Wook;Soo-Ok, Lee;Park, Young-Min;Na, Doe-Sun
    • BMB Reports
    • /
    • 제32권1호
    • /
    • pp.28-32
    • /
    • 1999
  • Annexin I (also called lipocortin 1), a 37-kDa member of the annexin family of proteins, has been implicated in the mitogenic signal transduction by epidermal growth factor (EGF). Annexin I is phosphorylated by the EGF signal, however, the role of annexin I in the EGF signal transduction is still unknown. To transduce extracellular signals into the intracellular targets, selective translocation of the signaling molecules to their targets would be necessary. In this study, we examined the subcellular locations of annexin I during EGF signal transduction. Treatment of A549 cells with EGF resulted in the translocation of cytoplasmic annexin I to the nucleus and perinuclear region as determined by Western blot and immunofluorescent staining. The nuclear translocation of annexin I was inhibited by tyrphostin AG 1478 and genistein, the inhibitors of EGF receptor kinase and downstream tyrosine kineses, respectively. Pretreatment of cells with cyclohexamide did not inhibit the nuclear translocation. The results suggest that nuclear translocation of annexin I is controlled by a series of kinase dependent events in the EGF receptor signaling pathway and may be important in tranducing the signals by EGF.

  • PDF

NMR Studies on the Structure of Human Annexin I

  • Han, Hee-Yong;Bang, Keun-Su;Na, Doe-Sun;Lee, Bong-Jin
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1996년도 춘계학술대회
    • /
    • pp.182-182
    • /
    • 1996
  • Annexin I is a member of the annexin family of calcium dependent phospholipid binding proteins and has anti-inflammatory activity by inhibiting phospholipase A$_2$ (PLA$_2$). Recent X-ray crystallographic study of annexin I identified six Ca$\^$2+/ binding bites, which was different types (type II, III) from the well-known EF-hand motif (type I). In this work, the structure of annexin I was studied at atomic level by using $^1$H, $\^$15/N and $\^$l3/C NMR(nuclear magnetic resonance) spectroscopy, and the effect of Ca$\^$2+/ binding on the structure of annexin I was studied, and compared with that of Mg$\^$2+/ binding, When Ca$\^$2+/ was added to annexin I, NMR peak change was occured in high- and low-field regions of $^1$H-NMR spectra. NMR peak change by Ca$\^$2+/ binding was different from that by Mg$\^$2+/ binding. Because annexin I is a larger protein with 35 kDa molecular weight, site-specific (amide-$\^$15/N, carbonyl-$\^$l3/C) labeling technique was also used. We were able to detect methionine, tyrosine and phenylalanine peaks respectively in $\^$13/C-NMR spectra, and each residue was able to be assigned by the method of doubly labeling annexin I with [$\^$13/C] carbonyl-amino acid and [$\^$15/N] amide-amino acid. In $\^$l3/C-NMR spectra of [$\^$13/C] carbonyl-Met labeled annexin I, we observed that methionine residues spatially located near Ca$\^$2+/ binding Sites Were Significantly effected by Ca$\^$2+/ binding. From UV spectroscopic data on the effect of Ca$\^$2+/ binding, we knew that Ca$\^$2+/ binding sites of annexin I have cooperativity in Ca$\^$2+/ binding. The interaction of annexin I with PLA$_2$ also could be detected by using heteronuclear NMR spctroscopy. Consequently, we expect that the anti-inflammatory action mechanism of annexin I may be a specific protein-protein interaction. The residues involved in the interaction with PLA$_2$ can be identified as active site by assigning NMR peaks effected by PLA$_2$ binding.

  • PDF

NMR Studies on the Structure of Human Annexin I

  • Han, Hee-Yong;Bang, Keun-Su;Na, Doe-Sun;Lee, Bong-Jin
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 1996년도 정기총회 및 학술발표회
    • /
    • pp.17-17
    • /
    • 1996
  • Annexin I is a member of the annexin family of calcium dependent phospholipid binding proteins and has anti-inflammatory activity by inhibiting phospholipase A$_2$ (PLA$_2$). Recent X-ray crystallographic study of annexin I identified six Ca$\^$2+/ binding sites, which was different types (type II, III) from the well-known EF-hand motif (type I). (omitted)

  • PDF

Annexin A2 and CD105 Expression in Pancreatic Ductal Adenocarcinoma is Associated with Tumor Recurrence and Prognosis

  • Huang, Ya-Kai;Liu, Hong;Wang, Xin-Zheng;Zhu, Shan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권22호
    • /
    • pp.9921-9926
    • /
    • 2014
  • To investigate the value of expression of annexin A2, microvessel density (MVD) and CD105 in pancreatic ductal adenocarcinoma (PDAC) tissues and adjacent normal tissues, immunohistochemical staining was used. The positive expression rate of Annexin A2 and the MVD in pancreatic ductal adenocarcinoma tissues was higher than that in in adjacent normal tissues (p<0.005). Expression of Annexin A2 and MVD correlated with histological grade (p<0.05). MVD of cancers in TNM stage IIb was higher than that in TNM stageI~IIa (p<0.026). Cancerous tissues with Annexin A2 staining grade 3+ had lower MVD than the tissues with the other Annexin A2 staining grade (p<0.05). Patients with high MVD had worse prognosis. However, our study did not confirm Annexin A2 was an independent risk factor for patients with PDAC. We confirmed MVD labeled by CD105 was an independent risk factor for patients with PDAC and had moderate predictive value of prognosis.

Neuroprotective Effect of Resveratrol on Acute Brain Ischemia Reperfusion Injury by Measuring Annexin V, p53, Bcl-2 Levels in Rats

  • Kizmazoglu, Ceren;Aydin, Hasan Emre;Sevin, Ismail Ertan;Kalemci, Orhan;Yuceer, Nurullah;Atasoy, Metin Ant
    • Journal of Korean Neurosurgical Society
    • /
    • 제58권6호
    • /
    • pp.508-512
    • /
    • 2015
  • Background : Cerebral ischemia is as a result of insufficient cerebral blood flow for cerebral metabolic functions. Resveratrol is a natural phytoalexin that can be extracted from grape's skin and had potent role in treating the cerebral ischemia. Apoptosis, a genetically programmed cellular event which occurs after ischemia and leads to biochemical and morphological changes in cells. There are some useful markers for apoptosis like Bcl-2, bax, and p53. The last reports, researchers verify the apoptosis with early markers like Annexin V. Methods : We preferred in this experimental study a model of global cerebral infarction which was induced by bilateral common carotid artery occlusion method. Rats were randomly divided into 4 groups : sham, ischemia-reperfusion (I/R), I/R plus 20 mg/kg resveratrol and I/R plus 40 mg/kg resveratrol. Statistical analysis was performed using Sigmastat 3.5 ve IBM SPSS Statistics 20. We considered a result significant when p<0.001. Results : After administration of resveratrol, Bcl-2 and Annexin levels were significantly increased (p<0.001). Depending on the dose of resveratrol, Bcl2 levels increased, p53 levels decreased but Annexin V did not effected. P53 levels were significantly increased in ishemia group, so apoptosis is higher compared to other groups. Conclusion : In the acute period, Annexin V levels misleading us because the apoptotic cell counts could not reach a certain level. Therefore we should support our results with bcl-2 and p53.

Annexin I Stimulates Insulin Secretion through Regulation of Cytoskeleton and PKC Activity

  • Kang, Na-Na;Won, Jong-Hak;Park, Young-Min
    • Animal cells and systems
    • /
    • 제13권1호
    • /
    • pp.17-23
    • /
    • 2009
  • In previous studies, we found that Annexin I (Anx I) was co-secreted with insulin in response to glucose, and that extracellular Anx I stimulated the release of insulin via the Anx I binding site in rat pancreatic islets and the &-cell line. However, the role that Anx I plays in the insulin secretion was not established. Therefore, in this study, we evaluated the insulin secretion pattern in response to Anx I and the involvement of the cytoskeleton or PKC in Anx Istimulated insulin secretion in MIN6N8a cells. The peak time of insulin secretion in response to Anx I treatment corresponded with the second phase insulin secretion by glucose in the perifused pseudoislets. In addition, Anx I-stimulated insulin secretion was not affect by readily releasable pool depletion. Taken together, these findings indicate that Anx I treatment was associated with movement of the reserve pool of insulin. Furthermore, Anx I-stimulated insulin secretion was attenuated by treatment with a microfilament inhibitor, cytochalasin B, as well as by PKC down regulation. These results indicate that Anx I may be a regulator of second phase insulin secretion.