• Title/Summary/Keyword: Annealing effect

Search Result 1,562, Processing Time 0.026 seconds

The Effect of Curie Point Annealing on Electrophysical Phenomena at the Magnetized SrO 6$Fe_{2}O_{3}$ Ceramics/Electrolyte Interface (자화된 SrO 6$Fe_{2}O_{3}$ 세라믹스와 전해질 계면의 전기물리적 현상에 미치는 Curie점 열처리 효과)

  • 천장호;손광철;라극환
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.7
    • /
    • pp.63-68
    • /
    • 1994
  • The Curie point annealing effects on electrophysical phenomena at the magnetized strontium ferrite(SrO$\cdot$ 6$Fe_{2}O_{3}$) ceramics electrode/10$^{-3}$M KC1 aqueous electrolyte interfaces have been studied using cyclic voltammetric, normal pulse voltammetric, chronocoulometric, and electrochemical impedance techiques. After the Curie point annealing the magnetic flux densities of the speciment was decreased from 900-1100 gauss to 1-2 gauss, i.e. demagnetized. The real component of interfacial impedance was decreased from 7280-7320 ohm to 790-830 ohm. The adsorption and the charge on the electrical double layer was increased from 0 $\mu$C to -58 $\mu$C. The Curie point annealing and the related electrical double layer effect can influence not only the electrophysical properties of the strontium ferrite ceramics electrode itself but also the electrochemical phenomena at the electrode interface. This experimental results suggest that the Curie point annealing and the related electrical double layer effect can be applied to electrochemical magnetic sensors.

  • PDF

BAF 소둔의 저온점 변화에 관한 연구

  • 김순경;이승수;전언찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.327-331
    • /
    • 1997
  • As demand for various kinds and small lot products has been increasing, batch annealing has been appreciated for its small restiction for the opteration. The cold spot of the coil is very important in the BAF(Batch annealing furnace) annealing process. Because of the annealing cycle time in the BAF, annealing was decided on the cold spot of the coil. So, we tested the effect,variation of cold spot, for hydrogen contents of atmospheric gas at the annealing furnace. As a result of several investigations. We confirmed the following characteristics ; after the heating and soaking,the cold spot of coil moved to 1/3 of coil thickness in the NHx atmospheric gas, but the mid point of the coil thickness is the cold spot in the Ax or .H/sub2. atmospheric gas. Therefore, the use of hydrogen instead of nitrogen as the protective gas,combined with high convection in batch annealing furnaces, has shown that considerable increases in furnace output and material quality are attainable. Owing to the low density, high diffusion and reducing character of hydrogen, a better transfer resulting in uniform material temperatures and improved coil surfaces can be achieved.

Mechanical Properties of Ultrafine Grained 5052 Al Alloy Produced by Cryogenic Rolling Process (극저온 압연으로 제조된 5052 Al 합금의 기계적 성질)

  • Nam W. J
    • Transactions of Materials Processing
    • /
    • v.13 no.8
    • /
    • pp.704-709
    • /
    • 2004
  • The effect of annealing temperature on microstructures and mechanical properties of the 5052 Al sheets rolled 88% reduction at cryogenic temperature was investigated for the annealing temperature of 150 ~ $300^{\circ}C$, in comparison with those rolled at room temperature. The presence of equiaxed grains, whose size is about 200nm in a diameter, was observed in the alloy deformed 88% and annealed $200^{\circ}C$ for an hour. When compared with the deformation at room temperature, the deformation at cryogenic temperature showed the higher strengths and equivalent elongation after annealing at the annealing temperature below $200^{\circ}C$. However, for annealing above $250^{\circ}C$ materials deformed at cryogenic temperature showed the lower strength than those deformed at room temperature. This behavior might be attributed to the higher rate of recrystallization and growth in materials deformed at cryogenic temperature during annealing, due to the lager density of dislocations accumulated during the deformation.

Investigation of Mechanical Stability of Nanosheet FETs During Electro-Thermal Annealing (Nanosheet FETs에서의 효과적인 전열어닐링 수행을 위한 기계적 안정성에 대한 연구)

  • Wang, Dong-Hyun;Park, Jun-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.1
    • /
    • pp.50-57
    • /
    • 2022
  • Reliability of CMOS has been severed under aggressive device scaling. Conventional technologies such as lightly doped drain (LDD) and forming gas annealing (FGA) have been applied for better device reliability, but further advances are modest. Alternatively, electro-thermal annealing (ETA) which utilizes Joule heat produced by electrodes in a MOSFET, has been newly introduced for gate dielectric curing. However, concerns about mechanical stability during the electro-thermal annealing, have not been discussed, yet. In this context, this paper demonstrates the mechanical stability of nanosheet FET during the electro-thermal annealing. The effect of mechanical stresses during the electro-thermal annealing was investigated with respect to device design parameters.

Performance of Annealed Polyacrylonitrile Nanofiltration Membrane (아닐링된 폴리아크릴로니트릴 나노막의 성능)

  • Lee Kew-Ho;Kim In-Chul
    • Membrane Journal
    • /
    • v.15 no.1
    • /
    • pp.15-21
    • /
    • 2005
  • The integrally skinned asymmetric PAN ultrafiltration membranes were annealed for reducing the pore size. The effect of the chemical structure of two PAN polymers (homo- and copolymer) on annealing was investigated. The annealing of PAN polymer was strongly affected by the chemical structure of the polymer. In other words, the annealing effect of the copolymer was much larger than that of the homopolymer due to its less rigid structure of the main chain. Before annealing, the membranes were usually preheated in water in terms of the complete removal of remained solvents in the membranes. The annealing effect was bigger when no preheating. However, the preheating of the membrane before annealing at high temperatures leads to an increase in the pore size of membranes. The surface of the membranes was slightly negative and the salt rejection of PAN nanofiltration membrane was in the following order: R(Na₂SO₄) > R(NaCl) > R(MgSO₄) > R(CaCl₂). This salt rejection behavior could be explained by the Donnan equilibrium and the electroneutrality.

Effect of Heat-treatment Conditions on Orientation, Structures and Resistances of LaNiO3 Thin Films by Sol-gel process (열처리조건이 LaNiO3 졸-겔 박막의 배향성과 구조 및 저항성에 미치는 영향)

  • 박민석;김대영;서병준;김강언;정수태
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.8
    • /
    • pp.859-865
    • /
    • 2004
  • LaNiO$_3$(LNO) thin films on (100) Si substrates are prepared by sol-gel method on heat treatment conditions, such as heat transfer direction, pyrolysis and annealing process, and annealing temperatures and times. The effect of heat treatment conditions on the (100) orientations, structures and resistances of the thin films are investigated by XRD, SEM(FESEM), and a lout probe method. Highly (100) orientation factor(0.97), a pseudocubic crystalline structure with a dense and uniform microstructure could be formed by the following conditions: 1) the heat transfer direction is from Si substrate to LNO, 2) the pyrolysis and annealing process are alternated, 3) the annealing temperature is $650^{\circ}C$ and 4) the annealing times is 3 minutes. The sheet resistance of thin films decreased with increasing of a annealing temperature and time, and a number of coating.

Electrical Properties Depending on Active Layer Thickness and Annealing Temperature in Amorphous In-Ga-Zn-O Thin-film Transistors (활성층 두께 및 열처리 온도에 따른 비정질 인듐갈륨징크옥사이드 박막트랜지스터의 전기적 특성 변화)

  • Baek, Chan-Soo;Lim, Kee-Joe;Lim, Dong-Hyeok;Kim, Hyun-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.521-524
    • /
    • 2012
  • We report on variations of electrical properties with different active layer thickness and post-annealing temperature in amorphous In-Ga-Zn-O (IGZO) thin-film transistors (TFTs). In particular, subthreshold swing (SS) of the IGZO-TFTs was improved as increasing the active layer thickness at an given post-annealing temperature, accompanying the negative shift in turn-off voltage. However, as increasing post-annealing temperature, only turn-off voltage was shifted negatively with almost constant SS value. The effect of the active layer thickness and post-annealing temperature on electrical properties, such as SS, field effect mobility and turn-off voltage in IGZO-TFTs has been explained in terms of the variation of trap density in IGZO channel layer and at gate dielectric/IGZO interface.

Effect of Post Deposition Annealing Temperature on the Structural, Optical and Electrical Properties of GZO/Cu Films (진공열처리온도에 따른 GZO/Cu 박막의 구조적, 광학적, 전기적 특성 변화)

  • Kim, Dae-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.9
    • /
    • pp.739-743
    • /
    • 2011
  • Ga doped ZnO (GZO)/Cu bi-layer films were deposited with RF and DC magnetron sputtering on glass substrate and then the effect of post deposition annealing temperature on the structural, optical and electrical properties of the films was investigated. The post deposition annealing process was conducted for 30 minutes in gas pressure of $1{\times}10^{-3}$ Torr and the annealing temperatures were 150 and $300^{\circ}C$. With increasing annealing temperature, GZO/Cu films showed an increment in the prefer orientation of ZnO (002) diffraction peak in the XRD pattern and the optical transmittance in a visible wave region was also increased, while the electrical sheet resistance was decreased. The GZO/Cu films annealed at $300^{\circ}C$ showed the highest optical transmittance of 70% and also showed the lowest electrical resistance of $85\;{\Omega}/{\Box}$ in this study.

Rapid thermal annealing effect of IZO transparent conducting oxide films grown by a box cathode sputtering (박스캐소드 스퍼터로 성장시킨 IZO 투명 전도막의 급속 열처리 효과)

  • Bae, Jung-Hyeok;Moon, Jong-Min;Jeong, Soon-Wook;Kim, Han-Ki;Yi, Min-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.473-474
    • /
    • 2006
  • We report on the rapid thermal annealing effect on the electrical, optical, and structural properties of IZO transparent conducting oxide films grown by box cathode sputtering (BCS). To investigate structural properties of rapid thermal annealed IZO films in $N_2$ atmosphere as a function of annealing temperature, syncrotron x-ray scattering experiment was carried out. It was shown that the amorphous structure of the IZO films was maintained until $400^{\circ}C$ because ZnO and $In_2O_3$ are immiscible and must undergo phase separation to allow crystallization. In addition, the IZO films grown at different Ar/$O_2$ ratio of 30/1.5 and 30/0 showed different preferred (222) and (440) orientation, respectively, with increase of rapid thermal annealing temperature. The electrical properties of the OLED with rapid thermal annealed IZO anode was degraded as rapid thermal annealing temperature of IZO increased. This indicates the amorphous IZO anode is more beneficial to make high-quality OLEDs.

  • PDF