• Title/Summary/Keyword: Ann

Search Result 2,352, Processing Time 0.023 seconds

Application of Back-propagation Algorithm for the forecasting of Temperature and Humidity (온도 및 습도의 단기 예측에 있어서 역전파 알고리즘의 적용)

  • Jeong, Hyo-Joon;Hwang, Won-Tae;Suh, Kyung-Suk;Kim, Eun-Han;Han, Moon-Hee
    • Journal of Environmental Impact Assessment
    • /
    • v.12 no.4
    • /
    • pp.271-279
    • /
    • 2003
  • Temperature and humidity forecasting have been performed using artificial neural networks model(ANN). We composed ANN with multi-layer perceptron which is 2 input layers, 2 hidden layers and 1 output layer. Back propagation algorithm was used to train the ANN. 6 nodes and 12 nodes in the middle layers were appropriate to the temperature model for training. And 9 nodes and 6 nodes were also appropriate to the humidity model respectively. 90% of the all data was used learning set, and the extra 10% was used to model verification. In the case of temperature, average temperature before 15 minute and humidity at present constituted input layer, and temperature at present constituted out-layer and humidity model was vice versa. The sensitivity analysis revealed that previous value data contributed to forecasting target value than the other variable. Temperature was pseudo-linearly related to the previous 15 minute average value. We confirmed that ANN with multi-layer perceptron could support pollutant dispersion model by computing meterological data at real time.

Artificial neural network model for the strength prediction of fully restrained RC slabs subjected to membrane action

  • Hossain, Khandaker M.A.;Lachemi, Mohamed;Easa, Said M.
    • Computers and Concrete
    • /
    • v.3 no.6
    • /
    • pp.439-454
    • /
    • 2006
  • This paper develops an artificial neural network (ANN) model for uniformly loaded restrained reinforced concrete (RC) slabs incorporating membrane action. The development of membrane action in RC slabs restrained against lateral displacements at the edges in buildings and bridge structures significantly increases their load carrying capacity. The benefits of compressive membrane action are usually not taken into account in currently available design methods based on yield-line theory. By extending the existing knowledge of compressive membrane action, it is possible to design slabs in building and bridge decks economically with less than normal reinforcement. The processes involved in the development of ANN model such as the creation of a database of test results from previous research studies, the selection of architecture of the network from extensive trial and error procedure, and the training and performance validation of the model are presented. The ANN model was found to predict accurately the ultimate strength of fully restrained RC slabs. The model also was able to incorporate strength enhancement of RC slabs due to membrane action as confirmed from a comparative study of experimental and yield line-based predictions. Practical applications of the developed ANN model in the design process of RC slabs are also highlighted.

Evaluation of the effect of aggregate on concrete permeability using grey correlation analysis and ANN

  • Kong, Lijuan;Chen, Xiaoyu;Du, Yuanbo
    • Computers and Concrete
    • /
    • v.17 no.5
    • /
    • pp.613-628
    • /
    • 2016
  • In this study, the influence of coarse aggregate size and type on chloride penetration of concrete was investigated, and the grey correlation analysis was applied to find the key influencing factor. Furthermore, the proposed 6-10-1 artificial neural network (ANN) model was constructed, and performed under the MATLAB program. Training, testing and validation of the model stages were performed using 81 experiment data sets. The results show that the aggregate type has less effect on the concrete permeability, compared with the size effect. For concrete with a lower w/b, the coarse aggregate with a larger particle size should be chose, however, for concrete with a higher w/c, the aggregate with a grading of 5-20 mm is preferred, too large or too small aggregates are adverse to concrete chloride diffusivity. A new idea for the optimum selection of aggregate to prepare concrete with a low penetration is provided. Moreover, the ANN model predicted values are compared with actual test results, and the average relative error of prediction is found to be 5.62%. ANN procedure provides guidelines to select appropriate coarse aggregate for required chloride penetration of concrete and will reduce number of trial and error, save cost and time.

Prediction of lightweight concrete strength by categorized regression, MLR and ANN

  • Tavakkol, S.;Alapour, F.;Kazemian, A.;Hasaninejad, A.;Ghanbari, A.;Ramezanianpour, A.A.
    • Computers and Concrete
    • /
    • v.12 no.2
    • /
    • pp.151-167
    • /
    • 2013
  • Prediction of concrete properties is an important issue for structural engineers and different methods are developed for this purpose. Most of these methods are based on experimental data and use measured data for parameter estimation. Three typical methods of output estimation are Categorized Linear Regression (CLR), Multiple Linear Regression (MLR) and Artificial Neural Networks (ANN). In this paper a statistical cleansing method based on CLR is introduced. Afterwards, MLR and ANN approaches are also employed to predict the compressive strength of structural lightweight aggregate concrete. The valid input domain is briefly discussed. Finally the results of three prediction methods are compared to determine the most efficient method. The results indicate that despite higher accuracy of ANN, there are some limitations for the method. These limitations include high sensitivity of method to its valid input domain and selection criteria for determining the most efficient network.

Estimation of Surface Runoff from Paddy Plots using an Artificial Neural Network (인공신경망 기법을 이용한 논에서의 지표 유출량 산정)

  • Ahn, Ji-Hyun;Kang, Moon-Seong;Song, In-Hong;Lee, Kyong-Do;Song, Jeong-Heon;Jang, Jeong-Ryeol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.4
    • /
    • pp.65-71
    • /
    • 2012
  • The objective of this study was to estimate surface runoff from rice paddy plots using an artificial neural network (ANN). A field experiment with three treatment levels was conducted in the NICS saemangum experimental field located in Iksan, Korea. The ANN model with the optimal network architectures, named Paddy1901 with 19 input nodes, 1 hidden layer with 16 neurons nodes, and 1 output node, was adopted to predict surface runoff from the plots. The model consisted of 7 parameters of precipitation, irrigation rate, ponding depth, average temperature, relative humidity, wind speed, and solar radiation on the daily basis. Daily runoff, as the target simulation value, was computed using a water balance equation. The field data collected in 2011 were used for training and validation of the model. The model was trained based on the error back propagation algorithm with sigmoid activation function. Simulation results for the independent training and testing data series showed that the model can perform well in simulating surface runoff from the study plots. The developed model has a main advantage that there is no requirement for any prior assumptions regarding the processes involved. ANN model thus can be a good tool to predict surface runoff from rice paddy fields.

Impacts of Impevious Cove Change on Pollutant Loads from the Daejeon-Stream Watershed Using AnnAGNPS (논문 - AnnAGNPS를 이용한 대전천 유역의 불투수면 변화에 따른 배출부하량 평가)

  • Chang, Seung-Woo;Kang, Moon-Seong;Song, In-Hong;Chung, Se-Woong
    • KCID journal
    • /
    • v.18 no.2
    • /
    • pp.3-14
    • /
    • 2011
  • Increased impervious surfaces alter stream hydrology resulting in lower flows during droughts and higher peak flows during floods. Not only urban area but also rural area has been expanded impervious surfaces because of increasing of greenhouses. The main objective of this study was to evaluate the performance of the AnnAGNPS (Annualized Non-Point Source Pollution Model) on the surface runoff characteristics of the Daejeon-Stream watershed, and to predict the hydrological effects due to increasing of impervious surfaces. The model parameters were obtained from the geographical information system (GIS) databases, and additional parameters calibrated with the observed data. The model was calibrated by using 2004 of the runoff data and validated by using 2002 data obtained from WAMIS (Water Management Information System) to compare the simulated results for the study watershed. R2 values and efficiency index (EI) between observed and simulated runoff were 0.78 and 0.80, respectively at the calibration period. In this study, expanding of impervious surfaces such as greenhouses caused increasing of surface runoff, but caused decreasing of total nitrogen and total phosphorus loads.

  • PDF

Development of Awarding System for Construction Contractors in Gaza Strip Using Artificial Neural Network (ANN)

  • El-Sawalhi, Nabil;Hajar, Yousef Abu
    • Journal of Construction Engineering and Project Management
    • /
    • v.6 no.3
    • /
    • pp.1-7
    • /
    • 2016
  • The purpose of this paper is to develop a model for selecting the best contractor in the Gaza Strip using the Artificial Neural Network (ANN). The contractor's selection methods and criteria were identified using a field survey. Fifty four engineers were asked to fill a questionnaire that covers factors related to the selection criteria of contractors practiced in Gaza Strip. The results shows that the dominant part of respondents (91%) confirmed that the current awarding method "the lowest bid price" is considered one of the major problems of the construction sector, "award the bid to the highest weight after combination of the technical and financial scores" represented 50% of the respondents. The criteria weights were determined based on Relative Importance Index (RII. Ninety-one tenders(13 projects) were used to train and test the ANN model after re-evaluating the contractors depend on the weights of factors to select the best contractor who achieves the highest score. Neurosolution software was used to train the models. The results of the trained models indicated that neural network reasonably succeeded in selection the best contractor with 95.96% accuracy. The performed sensitivity analysis showed that the profitability and capital of company are the most influential parameters in selection contractors. This model gives chance to the owner to be more accurate in selecting the most appropriate contractor.

Application of Artificial Neural Network for Optimum Controls of Windows and Heating Systems of Double-Skinned Buildings (이중외피 건물의 개구부 및 난방설비 제어를 위한 인공지능망의 적용)

  • Moon, Jin-Woo;Kim, Sang-Min;Kim, Soo-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.8
    • /
    • pp.627-635
    • /
    • 2012
  • This study aims at developing an artificial neural network(ANN)-based predictive and adaptive temperature control method to control the openings at internal and external skins, and heating systems used in a building with double skin envelope. Based on the predicted indoor temperature, the control logic determined opening conditions of air inlets and outlets, and the operation of the heating systems. The optimization process of the initial ANN model was conducted to determine the optimal structure and learning methods followed by the performance tests by the comparison with the actual data measured from the existing double skin envelope. The analysis proved the prediction accuracy and the adaptability of the ANN model in terms of Root Mean Square and Mean Square Errors. The analysis results implied that the proposed ANN-based temperature control logic had potentials to be applied for the temperature control in the double skin envelope buildings.

Performance tests on the ANN model prediction accuracy for cooling load of buildings during the setback period (셋백기간 중 건물 냉방시스템 부하 예측을 위한 인공신경망모델 성능 평가)

  • Park, Bo Rang;Choi, Eunji;Moon, Jin Woo
    • KIEAE Journal
    • /
    • v.17 no.4
    • /
    • pp.83-88
    • /
    • 2017
  • Purpose: The objective of this study is to develop a predictive model for calculating the amount of cooling load for the different setback temperatures during the setback period. An artificial neural network (ANN) is applied as a predictive model. The predictive model is designed to be employed in the control algorithm, in which the amount of cooling load for the different setback temperature is compared and works as a determinant for finding the most energy-efficient optimal setback temperature. Method: Three major steps were conducted for proposing the ANN-based predictive model - i) initial model development, ii) model optimization, and iii) performance evaluation. Result:The proposed model proved its prediction accuracy with the lower coefficient of variation of the root mean square errors (CVRMSEs) of the simulated results (Mi) and the predicted results (Si) under generally accepted levels. In conclusion, the ANN model presented its applicability to the thermal control algorithm for setting up the most energy-efficient setback temperature.

Estimation of Nugget Size in Resistance Spot Welding Processes Using Artificial Neural Networks (저항 점용접에서 인공신경회로망을 이용한 용융부 추정에 관한 연구)

  • 최용범;장희석;조형석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.393-406
    • /
    • 1993
  • In resistance spot welding process, size of molten nuggest have been utilized to assess the integrity of the weld quality. However real-time monitoring of the nugget size is an extremely difficult problem. This paper describes the design of an artificial neural networks(ANN) estimator to predict the nugget size for on-line use of weld quality monitoring. The main task of the ANN estimator is to realize the mapping characteristics from the sampled dynamic resistance signal to the actual negget size through training. The structure of the ANN estimator including the number of hidden layers and nodes in a layer is determined by an estimation error analysis. A series of welding experiments are performed to assess the performance of the ANN estimator. The results are quite promissing in that real-time estimation of the invisible nugget size can be achieved by analyzing the dynamic resistance signal without any conventional destructive testing of welds.