• Title/Summary/Keyword: Anmyeondo

Search Result 28, Processing Time 0.02 seconds

Integration of Kriging Algorithm and Remote Sensing Data and Uncertainty Analysis for Environmental Thematic Mapping: A Case Study of Sediment Grain Size Mapping (지표환경 주제도 작성을 위한 크리깅 기법과 원격탐사 자료의 통합 및 불확실성 분석 -입도분포지도 사례 연구-)

  • Park, No-Wook;Jang, Dong-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.44 no.3
    • /
    • pp.395-409
    • /
    • 2009
  • The objective of this paper is to illustrate that kriging can provide an effective framework both for integrating remote sensing data and for uncertainty modeling through a case study of sediment grain size mapping with remote sensing data. Landsat TM data which show reasonable relationships with grain size values are used as secondary information for sediment grain size mapping near the eastern part of Anmyeondo and Cheonsuman bay. The case study results showed that uncertainty attached to prediction at unsampled locations was significantly reduced by integrating remote sensing data through the analysis of conditional variance from conditional cumulative distribution functions. It is expected that the kriging-based approach presented in this paper would be efficient integration and analysis methodologies for any environmental thematic mapping using secondary information as well as sediment grain size mapping.

Morphological Characteristics and Classification Analysis of Selected Population of Vaccinium oldhami Miq. (정금나무 선발집단의 형태적 특성과 유연관계)

  • Kim, Moon-Sup;Kim, Sea-Hyun;Han, Jin-Gyu;Park, In-Hyeop
    • Korean Journal of Plant Resources
    • /
    • v.25 no.1
    • /
    • pp.72-79
    • /
    • 2012
  • Vaccinium oldhami Miq. is a Korean native tree, which is deciduous and shrub tree with broad leaf. It grows 1~4m in height generally. Ecologically, this tree grows well in shady place even in barren soil. Also, the tree has resistance to cold and dry, which tend to form a little community. This research investigates quantitative morphological characteristics of leaf and fruit among the V. oldhami in South Korea and then considers its relationship on the basis of raw data among the 10 populations. This study will give us invaluable information about growing conditions, reasonable management and breeding by selection of V. oldhami in South Korea. The main results obtained from this study are summarized as follows; Leaf size of Mudeung population was larger than other populations. Naebyeon population was smaller in size of the leaf than other populations. Anmyeondo population was larger in fruit characteristics compared with other populations and Deogyu population was the smallest among populations. According to cluster analysis based on the leaf and fruit morphological characteristics, the natural V. oldhami populations were classified into four groups such as the first group of Kumo population, the second group of Mudeung population, the third group of Anmyundo, Daedun, Doolyun population and the fourth group of the other five populations.

Analysis of Genetic Relationship among Korean Native Orostachys Species Using RAPD (RAPD를 이용한 자생 바위솔속(Orostachys) 식물의 유연관계 분석)

  • Lee, Byoung Ae;Kim, Hag Hyun;Cho, Yong Gu;Lee, Cheol Hee
    • Horticultural Science & Technology
    • /
    • v.19 no.2
    • /
    • pp.159-162
    • /
    • 2001
  • The genetic relationships of Korean native Orostachys species collected from various regions were analysed using random amplified polymorphic DNA (RAPD) method. Eighteen Orostachys species analysed with UPGMA were clustered into three groups A, B, and C. However, four species were not clustered into any group. O. iwarenge species in group A (No. 18-No. 22) showed low similarity with 66.3-73.9% according to the cluster analysis. O. malacophyllus species in group B (No. 12-No. 17) showed low similarity with 66.7-83.7% according to the cluster analysis. The similarity coefficient value of O. japonicus (No. 3-No. 8) except Anmyeondo collected variety (No. 9) showed higher level with 84.2-92.3% than O. iwarenge or O. malacophyllus. Therefore, O. japonicus is thought to be genetically stable, and have less regional variation.

  • PDF

Assessment of Flood Vulnerability: Baramarae Intertidal Area in Anmyeondo, Korea (침수 취약성 평가: 안면도 바람아래 조간대 지역을 사례로)

  • KIM, Jang-soo;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.17 no.2
    • /
    • pp.29-39
    • /
    • 2010
  • Climate change recently causes rapid rises in sea level in Baramarae intertidal area and the rises present several socio-economic impacts to the affected area. We have assessed the vulnerability of the region by the rise of the sea level. Using quantitative GIS method on multi-temporal satellite images, we have first estimated the elevation (Digital Elevation Model: DEM) of Baramarae intertidal area and hence we were possibly able to identify the flooded areas under the IPCC SRES scenarios. As sea level rises by 20cm, 30cm, 40cm, 50cm and 60 cm, the estimated flooded areas of the tidal flat are 68ha, 85ha, 103ha, 121ha and 139ha, respectively. The most affected area is the tidal flat in Gagyeongju Village (Gonam-li, Gonam-myeon, Taean, Chungnam), because it has not only lower altitude but also, perhaps more significantly smooth slope. The potential affected areas are currently populated by farming of oysters and short-necked clams and therefore the areas expect significant economic loss by rise of sea level.

Composition and Neutralization Characteristics of Precipitation at the Anmyeon-do and Gosan GAW Stations from 2008 to 2017 (안면도와 고산 기후변화감시소에서 채취한 강수 성분의 조성 및 중화 특성(2008~2017년))

  • Ko, Hee-Jung;Jeong, Jiyoung;Kim, Eun-Sil;Lee, Sang-Sam;Ryoo, Sang-Boom
    • Atmosphere
    • /
    • v.29 no.4
    • /
    • pp.403-416
    • /
    • 2019
  • Precipitation samples were collected at the GAW Stations in Anmyeon-do and Gosan for 10 years (2008-2017) to analyze pH, electrical conductivity and NH4+, Na+, K+, Mg2+, Ca2+, SO42-, NO3-, Cl-, and F- ions. From the analysis, the correlation between pH and rainfall, the composition of precipitation and comparison with other regions, and the results of neutralization characteristics by seasonal and pH were determined. In the comparison of ion balance and conductivity for the validation of analytical data, the correlation coefficients were within the range of 0.996~0.999, implying good linear relationship. The volume-weighted pH of the Anmyeon-do and Gosan areas were 4.7 and 4.9, respectively. The pH of the rainfall was affected by washout and rainout in both areas. The ionic strength of precipitation at Anmyeondo and Gosan were 0.42 ± 0.63 mM and 0.37 ± 0.75 mM, indicating about 27.6% and 35.3% of the total precipitation as per a pure precipitation criterion (10-4 M), respectively. The composition ratio of ionic species were 44.7% and 57.5% for marine sources (Na+, Mg2+, Cl-), 40.6% and 22.2% for the secondary inorganic components (NH4+, nss-SO42-, NO3-), and 5.6% and 4.0% for the soil source (nss-Ca2+), respectively. The neutralization factor of Anmyeon-do and Gosan were 0.43~0.65 and 0.34~0.48, and the neutralization factors of calcium carbonate were 0.15~0.34 and 0.25~0.30, respectively. Thus, both regions have the highest rate of neutralization caused by ammonia. As pH increased in Anmyeon-do and Gosan, change in calcium carbonate became greater than that in ammonia.

Analysis of Sedimentation and Erosion Environment Change around the Halmi-island, Anmyeondo in West Coast of Korea (안면도 할미섬 주변의 침식·퇴적환경 변화 분석)

  • KIM, Jang-soo;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.2
    • /
    • pp.123-132
    • /
    • 2012
  • In this study, we analyzed sedimentation and erosion environment around Halmiseom on Anmyeon Island using wind direction and wind speed data, gain size analysis data and datum-point measured values. To observe changes in sedimentation and erosion environment around Halmiseon, we installed datum points at 12 locations around Halmiseom and carried out at total of 32 field measurements from May 16th, 2010 to May 8th, 2012. The field measurement results showed that H-3, H-4, H-5 and H-9 points are dominated by sedimentation environment, and H-7, H-8, H-10, H-11 and H-12 points are dominated by erosion environment. Meanwhile, sedimentation and erosion appeared alternately at H-2 and H-6 points. These results indicate that a bank installed in the southwest side of Halmiseom prevented sand of the beach from moving to the northeast side, leaving the sand of the beach being deposited at the sites, and the northeast side, where sand was not provided from beach ridge of Halmiseon was dominated by sedimentation. That is, the southwest side of Halmiseom was dominated by sedimentation, but the northeast side was dominated by erosion in general. However, the opposite trends were observed at H-9 point of the northeast side and H-12 point of the southwest side. According to analysis, since H-9 point is located at the end of sand spit connected to Halmiseom, the supply of sediments by a tidal current is possible. On the other hand, it was difficult to analyze the cause of erosion in case of H-12 point located at the sand dune due to the short measurement period.

Revision of 22-year Records of Atmospheric Baseline CO2 in South Korea: Application of the WMO X2019 CO2 Scale and a New Baseline Selection Method (NIMS Filter) (지난 22년간 한반도 이산화탄소 배경농도 재산정 연구 - WMO/GAW 척도 변경과 NIMS 온실가스 배경농도 산출기법을 중심으로 -)

  • Seo, Wonick;Lee, Haeyoung;Kim, Yeon-Hee
    • Atmosphere
    • /
    • v.31 no.5
    • /
    • pp.593-606
    • /
    • 2021
  • The Korea Meteorological Administration/National Institute of Meteorological Sciences (KMA/NIMS) has monitored atmospheric CO2 at Anmyeondo (AMY) World Meteorological Organization (WMO) Global Atmosphere Watch Programme (GAW) regional station since 1999, and expanded its observations at Jeju Gosan Suwolbong station (JGS) in the South and at Ulleungdo-Dokdo stations in the East (ULD and DOK) since 2012. Due to a recent WMO CO2 scale update and a new filter (NIMS) to select baseline levels at each station, the 22 years of CO2 data are recalculated. After correction for the new CO2 scale, we confirmed that those corrected records are reasonable within the compatibility goal (±0.1 ppm of CO2) between KMA/NIMS and National Oceanic and Atmosphereic Administration (NOAA) flask-air measurements with the new scale. With the new NIMS filter, CO2 baseline levels are now more representative of the large-scale background compared to previous values, which contained large CO2 enhancements. Atmospheric CO2 observed in South Korea is 4 to 8 ppm greater than the global average while the amplitude of seasonal variation is similar (10~13 ppm) to the amplitude averaged over a comparable latitude zone (30°N-60°N). Variations in CO2 growth rate are also similar, increasing and decreasing similar to global values, as it reflects the net balance between terrestrial respiration and photosynthesis. In 2020, atmospheric CO2 continued increasing despite the COVID-19 pandemic. Even though fossil emission was reduced (around -7% globally), we still emitted large amounts of anthropogenic CO2. Overall, since CO2 has large natural variations and its source was derived from not only fossil fuel but also biomass burning, the small fossil emission reduction could not affect the atmospheric level directly.

Verification and Estimation of the Contributed Concentration of CH4 Emissions Using the WRF-CMAQ Model in Korea (WRF-CMAQ 모델을 이용한 한반도 CH4 배출의 기여농도 추정 및 검증)

  • Moon, Yun-Seob;Lim, Yun-Kyu;Hong, Sungwook;Chang, Eunmi
    • Journal of the Korean earth science society
    • /
    • v.34 no.3
    • /
    • pp.209-223
    • /
    • 2013
  • The purpose of this study was to estimate the contributed concentration of each emission source to $CH_4$ by verifying the simulated concentration of $CH_4$ in the Korean peninsula, and then to compare the $CH_4$ emission used to the $CH_4$ simulation with that of a box model. We simulated the Weather Research Forecasting-Community Multiscale Air Quality (WRF-CMAQ) model to estimate the mean concentration of $CH_4$ during the period of April 1 to 22 August 2010 in the Korean peninsula. The $CH_4$ emissions within the model were adopted by the anthropogenic emission inventory of both the EDGAR of the global emissions and the GHG-CAPSS of the green house gases in Korea, and by the global biogenic emission inventory of the MEGAN. These $CH_4$ emission data were validated by comparing the $CH_4$ modeling data with the concentration data measured at two different location, Ulnungdo and Anmyeondo in Korea. The contributed concentration of $CH_4$ estimated from the domestic emission sources in verification of the $CH_4$ modeling at Ulnungdo was represented in about 20%, which originated from $CH_4$ sources such as stock farm products (8%), energy contribution and industrial processes (6%), wastes (5%), and biogenesis and landuse (1%) in the Korean peninsula. In addition, one that transported from China was about 9%, and the background concentration of $CH_4$ was shown in about 70%. Furthermore, the $CH_4$ emission estimated from a box model was similar to that of the WRF-CMAQ model.