• Title/Summary/Keyword: Ankle joint strategy training

Search Result 5, Processing Time 0.018 seconds

The Influences of the Intensive Ankle Joint Strategy Training on the Muscular Strength and Balancing Ability in the Elderly Women (발목관절 전략 집중 훈련이 노인여성의 근력과 균형능력에 미치는 영향)

  • Cho, Sung-Hyoun;Kim, Cheol-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.5909-5919
    • /
    • 2012
  • The purpose of this study was to compare the effects of the intensive ankle joint strategy training on the muscular strength and balancing ability in the elderly women. The subject of this study were 30 elderly women aged from 65 to 80 and randomly assigned to three groups. For 6 weeks, two experimental groups took the training an hour every 3 days of a week. The results that measured the dynamometer, FRT, and SEBT after implementing general lower limbs exercise and the intensive ankle joint strategy training for 6 weeks showed that the changes in the control and experimental group I were not statistically significant while the changes in the experimental group II were statistically significant (p<.05). For the prevention of the elderlies from fall and the treatment approaches, it is deemed to be necessary additional studies on the diverse variables through the intensive training of the ankle strategy.

Intervention Strategy Applied ICF Checklists for Sitting Cross-Legged in Patient with Multiple Ligament Knee Injury: Single Subject Study

  • Kim, Chan Yang;Kwon, Jung-Won
    • The Journal of Korean Physical Therapy
    • /
    • v.33 no.3
    • /
    • pp.168-177
    • /
    • 2021
  • Purpose: This study applies the ICF to identify the patient's body function, structure, and participation, evaluates the patient's environmental factors and individual factors, and is a high level of movement to return to the society of patients with multiple ligament injury of the knee joint. Methods: Progressive strength training and ROM exercise were performed 30 minutes a day, 5 times a week for 6 weeks. The evaluation was performed by examining the ROM, length, MMT, instability, dynamic balance, pain and depression. Results: The ROM of the knee joint was improved from 110° to 135° after intervention, and the knee flexion length decreased from 69 cm to 45 cm. Knee flexor is Good after intervention from Poor-, and knee extensor is Good+ after intervention from Poor, and the plantar flexor of the ankle joint improved from Poor- before intervention to Good after intervention and dorsi-flexor of the ankle joint improve to Good from Poor. Pain index was moderate before and after the intervention, with a score of 3, 2 after the intervention, and when maintaining the sitting cross-legged, the before intervention score was 7 to 4 after the intervention. Conclusion: The patient's posture of sitting cross-legged was maintained from 30 seconds before intervention to 14 minutes after intervention. These results were able to set the hypothesis design, intervention method and goal that the multifaceted approach of environment and individual factors as well as body function and structure area, activity and participation area using ICF checklists, it is helped the patient to return to daily life.

The Study of Strategy for Energy Dissipation During Drop Landing from Different Heights (드롭랜딩 시 높이 변화에 따른 인체 분절의 충격흡수 전략에 관한 연구)

  • Cho, Joon-Haeng;Koh, Young-Chul;Lee, Dae-Yeon;Kim, Kyoung-Hun
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.3
    • /
    • pp.315-324
    • /
    • 2012
  • The purpose of current study was to investigate the effects of the heights on the lower extremities, torso and neck segments for energy dissipation during single-leg drop landing from different heights. Twenty eight young healthy male subjects(age: $23.21{\pm}1.66yr$, height: $176.03{\pm}4.22cm$, weight: $68.93{\pm}5.36kg$) were participated in this study. The subjects performed the single-leg drop landing from the various height(30, 45 & 60 cm). Force plates and motion-capture system were used to capture ground reaction force and kinematics data, respectively. The results were as follows. First, the ROM at the ankle, knee, hip and trunk was increased with the increased heights but the ROM at the neck was increased in the 60cm. Second, the angular velocity, moment and eccentric work at the ankle, knee, hip, trunk, and neck was increased with the increased heights. Third, the contribution to total work at the knee joint was not significantly different, while the ankle joint rate was decreased and hip and neck rate was increased in the 60cm, and trunk rate was increased with the increased heights. Lastly, the increase in landing height was able to augment the level of energy dissipation not only at the lower extremities but also at the trunk and neck. The findings showed that drop landing affect trunk and neck with lower extremity joints. Therefore, we need to consider that trunk and neck strengthening including stability should be added to reduce sports injury during prevention training.

Effects of Visual Information Blockage on Landing Strategy during Drop Landing (시각 정보의 차단이 드롭랜딩 시 착지 전략에 미치는 영향)

  • Koh, Young-Chul;Cho, Joon-Haeng;Moon, Gon-Sung;Lee, Hae-Dong;Lee, Sung-Cheol
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.1
    • /
    • pp.31-38
    • /
    • 2011
  • This study aimed to determine the effects of the blockage of visual feedback on joint dynamics of the lower extremity. Fifteen healthy male subjects(age: $24.1{\pm}2.3\;yr$, height: $178.7{\pm}5.2\;cm$, weight: $73.6{\pm}6.6\;kg$) participated in this study. Each subject performed single-legged landing from a 45 cm-platform with the eyes open or closed. During the landing performance, three-dimensional kinematics of the lower extremity and ground reaction force(GRF) were recorded using a 8 infrared camera motion analysis system (Vicon MX-F20, Oxford Metric Ltd, Oxford, UK) with a force platform(ORG-6, AMTI, Watertown, MA). The results showed that at 50 ms prior to foot contact and at the time of foot contact, ankle plantar-flexion angle was smaller(p<.05) but the knee joint valgus and the hip flexion angles were greater with the eyes closed as compared to with the eyes open(p<.05). An increase in anterior GRF was observed during single-legged landing with the eyes closed as compared to with the eyes open(p<.05). Time to peak GRF in the medial, vertical and posterior directions occurred significantly earlier when the eyes were closed as compared to when the eyes were open(p<.05). Landing with the eyes closed resulted in a higher peak vertical loading rate(p<.05). In addition, the shock-absorbing power decreased at the ankle joint(p<.05) but increased at the hip joints when landing with the eyes closed(p<.05). When the eyes were closed, landing could be characterized by a less plantarflexed ankle joint and more flexed hip joint, with a faster time to peak GRF. These results imply that subjects are able to adapt the control of landing to different feedback conditions. Therefore, we suggest that training programs be introduced to reduce these injury risk factors.

A Study of Postural Control Characteristics in Schoolchild with Intellectual Disability (초등학교 지적장애아동의 자세조절 특성)

  • Lee, Hyoung Soo
    • 재활복지
    • /
    • v.14 no.3
    • /
    • pp.225-256
    • /
    • 2010
  • This study aims to provide the basic data of the rehabilitation program for the schoolchild with intellectual disability by designing new framework of the features of postural control for the schoolchild with intellectual disability. For this, the study investigated what sensations the schoolchild are using to maintain posture by selectively or synthetically applying vision, vestibular sensation and somato-sensation, and how the coordinative sensory system of the schoolchild is responding to any sway referenced sensory stimulus. The study intended to prove the limitation of motor system in estimating the postural stability by providing the cognitive motor task, and provided the features of postural control of the schoolchild with intellectual disability by measuring the onset times and orders of muscle contraction of neuron-muscle when there is a postural control taking place due to the exterior disturbance. Furthermore, by comparatively analyzing the difference between the normal schoolchild and the intellectually disabled schoolchild, this study provided an optimal direction for treatment planning when the rehabilitation program is applied in the postural control ability training program for the schoolchild with intellectual disability. Taking gender and age into consideration, 52 schoolchild including 26 normal schoolchild and 26 intellectually disabled schoolchild were selected. To measure the features of postural control, CTSIB test, and postural control strategy test were conducted. The result of experiment is as followed. First, the schoolchild with intellectual disability showed different feature in using sensory system to control posture. The normal schoolchild tended to depend on somato-sensory or vision, and showed a stable postural control toward a sway referenced stimulus on somato-sensory system. The schoolchild with intellectual disability tended to use somato-sensory or vision, and showed a very instable postural control toward a sway referenced vision or a sway referenced stimulus on somato-sensory system. In sensory analysis, the schoolchild with intellectual disability showed lower level of proficiency in somato-sensation percentile, vision percentile and vestibular sensation percentile compare to the normal schoolchild. Second, as for the onset times and orders of muscle contraction for strategies of postural control when there is an exterior physical stimulus, the schoolchild with intellectual disability showed a relatively delayed onset time of muscle control, and it was specially greater when the perturbation is from backward. As for the onset orders of muscle contraction, it started from muscles near coax then moved to the muscles near ankle joint, and the numbers and kinds of muscles involved were greater than the normal schoolchild. The normal schoolchild showed a fast muscle contracting reaction from every direction after the perturbation stimulus, and the contraction started from the muscles near the ankle joint and expanded to the muscles near coax. From the results of the experiments, the special feature of the postural control of the schoolchild with intellectual disability is that they have a higher dependence on vision in sensory system, and there was no appropriate integration of swayed sensation observed in upper level of central nerve system. In the motor system, the onset time of muscle contraction for postural control was delayed, and it proceeded in reversed order of the normal schoolchild. Therefore, when use the clinical physical therapy to improve the postural control ability, various sensations should be provided and should train the schoolchild to efficiently use the provided sensations and use the sensory experience recorded in upper level of central nerve system to improve postural control ability. At the same time, a treatment program that can improve the processing ability of central nerve system through meaningful activities with organizing and planning adapting reaction should be provided. Also, a proprioceptive motor control training program that can induce faster muscle contraction reaction and more efficient onset orders from muscularskeletal system is need to be provided as well.