• Title/Summary/Keyword: Ankle joint stability

Search Result 105, Processing Time 0.024 seconds

Biped Walking of Hydraulic Humanoid Robot on Inclined Floors (유압식 이족 휴머노이드 로봇의 경사면 보행 연구)

  • Kim, Jung-Yup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.258-266
    • /
    • 2012
  • This paper describes a biped walking algorithm for a hydraulic humanoid robot on inclined floors. To realize stable and robust biped walking, the walking algorithm was divided into five control strategies. The first is a joint position control strategy. This strategy is for tracking desired joint position trajectories with a gain switching. The second is a multi-model based ZMP (Zero Moment Point) control strategy for dynamic balance. The third is a walking pattern flow control strategy for smooth transition from step to step. The fourth is an ankle compliance control, which increases the dynamic stability at the moment of floor contact. The last is an upright pose control strategy for robust walking on an inclined floor. All strategies are based on simple pendulum models and include practical sensory feedback in order to implement the strategies on a physical robot. Finally, the performance of the control strategies are evaluated and verified through dynamic simulations of a hydraulic humanoid on level and inclined floors.

Knee Joint Control of New KAFO for Polio Patients Gait Improvement (소아마비 환자의 보행개선을 위한 새로운 장하지 보조기의 무릎관절 제어)

  • 강성재;조강희;김영호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.132-135
    • /
    • 2002
  • In the present study, an electro-mechanical KAFO (knee-ankle-foot orthosis) which satisfies both the stability in stance and the knee flexion in swing was developed and evacuated in eight polio patients. A knee joint control algorithm suitable for polio patients who are lack of the stability in pre-swing was also developed and various control systems and circuits were also designed. In addition, knee flexion angles and knee moments were measured and analyzed for polio patients who used the developed KAFO with the three-dimensional motion analysis system. Energy consumption was also evaluated for the developed KAFO by measuring the movement of the COG (center of gravity) during gait. From the present study, the designed foot switch system successfully determined the gait cycle of polio patients and controlled knee joint of the KAFO, resulting in the passive knee flexion or foot clearance during swing phase. From the three-dimensional gait analysis for polio patients, it was found that the controlled-knee gait with the developed electro-mechanical KAFO showed the knee flexion of 40$^{\circ}$∼45$^{\circ}$ at an appropriate time during swing. Vertical movements of COG in controlled-knee gait (gait with the developed electro-mechanical KAFO) were significantly smaller than those in looked knee gait(gait with the locked knee Joint). and correspondingly controlled-knee gait reduced approximately 40% less energy consumption during horizontal walking gait. More efficient gait patterns could be obtained when various rehabilitation training and therapeutic programs as well as the developed electro-mechanical KAFO were applied for polio patients.

  • PDF

Relationship between Attenuation of Impact Shock at High Frequency and Flexion-Extension of the Lower Extremity Joints during Downhill Running

  • Ryu, Ji-Seon;Yoon, Suk-Hoon;Park, Sang-Kyoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.2
    • /
    • pp.167-174
    • /
    • 2016
  • Objective: The purpose of this study was to determine the interrelationship between ranges of motion of the knee and ankle joints on the sagittal plane and the attenuation magnitude of impact shock at high frequency (9~20 Hz) in the support phase during downhill running. Method: Fifteen male heel-toe runners with no history of lower extremity injuries were recruited for this study (age, $25.07{\pm}5.35years$; height, $175.4{\pm}4.6cm$; mass, $75.8{\pm}.70kg$). Two uniaxial accelerometers were mounted to the tuberosity of tibia and sacrum, respectively, to measure acceleration signals. The participants were asked to run at their preferred running speed on a treadmill set at $0^{\circ}$, $7^{\circ}$, and $15^{\circ}$ downhill. Six optical cameras were placed around the treadmill to capture the coordinates of the joints of the lower extremities. The power spectrum densities of the two acceleration signals were analyzed and used in the transfer function describing the gain and attenuation of impact shock between the tibia and the sacrum. Angles of the knee and ankle joints on the sagittal plane and their angle ranges were calculated. The Pearson correlation coefficient was used to test the relationship between two variables, the magnitude of impact shock, and the range of joint angle under three downhill conditions. The alpha level was set at .05. Results: Close correlations were observed between the knee joint range of motion and the attenuation magnitude of impact shock regardless of running slopes (p<.05), and positive correlations were found between the ranges of motion of the knee and ankle joints and the attenuation magnitude of impact shock in $15^{\circ}$ downhill running (p<.05). Conclusion: In conclusion, increased knee flexion might be required to attenuate impact shock during downhill and level running through change in stride or cadence while maintaining stability, and strong and flexible ankle joints are also needed in steeper downhill running.

ZMP Compensation Algorithm for Stable Posture of a Humanoid Robot

  • Hwang, Byung-Hun;Kong, Jung-Shik;Lee, Bo-Hee;Kim, Jin-Geol;Huh, Uk-Youl
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2271-2274
    • /
    • 2005
  • The desired ZMP is different from the actual ZMP of a humanoid robot during actual walking and stand upright. A humanoid robot must maintain its stable posture although external force is given to the robot. A humanoid robot can know its stability with ZMP. Actual ZMP may be moved out of the foot-print polygons by external disturbance or uneven ground surfaces. If the position of ZMP moves out of stable region, the stability can not be guaranteed. Therefore, The control of the ZMP is necessary. In this paper, ZMP control algorithm is proposed. Herein, the ZMP control uses difference between desired ZMP and actual ZMP. The proposed algorithm gives reaction moment with ankle joint when external force is supplied. 3D simulator shows motion of a humanoid robot and calculated data.

  • PDF

Impact of Wearing Functional Supporters that Prevent Seniors from Falling on Muscle Function, Sense of Balance, and Overcoming Fatigue (시니어 낙상예방을 위한 기능성 서포터 착용에 따른 근기능 및 균형감각과 피로회복에 미치는 영향 연구)

  • Um, Sungheum;Jang, Seonu;Park, Munhwan;Lee, Seongjae
    • Fashion & Textile Research Journal
    • /
    • v.24 no.1
    • /
    • pp.156-163
    • /
    • 2022
  • Loss of leg muscle and muscle weakness, which are caused by aging, affect muscle function and sense of balance. As a way of preventing seniors from falling, we developed the idea of wearing functional supporters based on graduated compression technique and in the form of a taping supporter. Their impact on power, sense of balance, overcoming fatigue, and subjective wearing sensation was investigated. The following results were obtained. After wearing functional compression supporters, body temperature increased from 24.5 ± 0.5℃ to 26.3 ± 0.6℃. Calf size, which assesses the level of edema, decreased from 26.1 ± 1.8cm to 25.7 ± 1.8cm. The result of dynamic balance test, which helps estimate the fall prevention effect, increased from 6.4 ± 0.9sec to 7.1 ± 0.6sec. Lactate level, which indicates the level of fatigue, decreased from 8.1 ± 0.6mmol/L to 7.3 ± 0.8mmol/L. Standing long jump record, which assesses power, increased from 110.1 ± 3.1cm to 112.0 ± 2.8cm. Standing on one leg with eyes closed, which assesses sense of balance, increased from 4.2 ± 1.1sec to 6.5 ± 0.8sec. Ankle angle, which assesses joint stability, increased from 75.3 ± 4.0° to 80.1 ± 1.7°. In metabolism and physical performance testing, which assesses keep, the score increased from 26.3 ± 1.7 to 28.8 ± 1.2. Muscle supporting score, which assesses joint stability, increased from 7.3 ± 0.6 to 7.8 ± 0.4. In the category of body type, which assesses wearing sensation and body shaping function, the score increased from 5.7 ± 1.4 to 6.4 ± 1.2

Effects of Changes in Illumination Level and Slope on Fall-Related Biomechanical Risk Factors While Walking for Elderly Women (조도와 주로 변화가 노인 여성 보행 시 낙상 관련 운동역학적 위험요인에 미치는 영향)

  • Jeon, Hyun-Min;Park, Sang-Kyoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.4
    • /
    • pp.413-421
    • /
    • 2015
  • Objective : The purpose of this study was to investigate biomechanical changes of the lower limb including dynamic stability with changes in illumination (300Lx, 150Lx, and 5Lx) and slope (level and $15^{\circ}$ downhill) as risk factors for elderly falls. Method : Fifteen elderly females were selected for this study. Seven infrared cameras (Proreflex MCU 240: Qualisys, Sweden) and an instrumented treadmill (Bertec, USA) surrounded by illumination regulators and lights to change the levels of illumination were used to collect the data. A One-Way ANOVA with repeated measures using SPSS 12.0 was used to analyze statistical differences by the changes in illumination and slope. Statistical significance was set at ${\alpha}=.05$. Results : No differences in the joint movement of the lower limbs were found with changes in illumination (p>.05). The maximum plantar flexion movement of the ankle joints appeared to be greater at 5Lx compared to 300Lx during slope gait (p<.05). Additionally, maximum extension movement of the hip joints appeared to be greater at 5Lx and 150Lx compared to 300Lx during slope gait (p<.05). The maximum COM-COP angular velocity (direction to medial side of the body) of dynamic stability appeared to be smaller at 150Lx and 300Lx compared to 5Lx during level gait (p<.05). The minimum COM-COP angular velocity (direction to lateral side to the body) of dynamic stability appeared smaller at 150Lx compared to 5Lx during level gait (p<.05). Conclusion : In conclusion, elderly people use a stabilization strategy that reduces walk speed and dynamic stability as darkness increases. Therefore, the changes in illumination during gait induce the changes in gait mechanics which may increase the levels of biomechanical risk in elderly falls.

Results of Syndesmotic Screw Fixation versus Posterior Malleolus Fixation in Syndesmotic Injury at Pronation External Rotation Stage IV Ankle Fracture with Posterior Malleolus Fracture: Postoperative One Year Follow-up (후과 골절을 동반한 Lauge-Hansen 회내-외회전형 4단계 족관절 골절에서 원위 경비인대 결합 손상에 대한 원위 경비 나사 고정술과 후과 고정술의 결과 비교: 수술 1년째 추시 결과)

  • Park, Se-Jin;Jeong, Hwa-Jae;Shin, Hun-Kyu;Seo, Dong-Seok;Choi, Young-Min;Kim, Eugene
    • Journal of Korean Foot and Ankle Society
    • /
    • v.18 no.1
    • /
    • pp.29-35
    • /
    • 2014
  • Purpose: The purpose of this study is to compare the radiologic and clinical results of syndesmotic screw fixation and posterior malleolar fixation for syndesmotic injury in Lauge-Hansen classification pronation-external rotation (PER) stage IV ankle fractures with posterior malleolus fracture. Materials and Methods: We designed a retrospective study that included patients with Lauge-Hansen classification PER stage IV ankle fracture with posterior malleolus fracture. Of 723 patients who underwent ankle fracture surgery from March 2005 to November 2012, 29 were included in this study. In this study, syndesmotic injury was treated with syndesmotic screw fixation or posterior malleolus fixation. There were 15 cases of syndesmotic screw fixation and 14 cases of posterior malleolar fixation. We compared the radiologic and clinical results at one year postoperatively. Posterior malleolus fragment size on a pre-operative computed tomographic image, and tibiofibular overlap, medial clear space, articular step-off, Kellgren-Lawrence grade, and Takakura classification on a postoperative one year followup radiograph were used for comparison of the radiologic results. The clinical results were assessed using the American Orthopaedic Foot and Ankle Society score, visual analogue scale score, and patient subjective satisfaction score. Results: Posterior malleolar fragment size was $12.62%{\pm}3.01%$ of the joint space in the syndesmotic screw fixation group and $27.04%{\pm}4.34%$ in the posterior malleolar fixation group. A statistical difference was observed between the two groups. However, other results, including tibiofibular overlap, medial clear space, articular step-off, Kellgren-Lawrence grade, Takakura classification, and clinical scores showed no statistical difference. Conclusion: In the Lauge-Hansen classification PER stage IV ankle fracture with posterior malleolus fracture, if the posterior malleolus fracture can be reduced anatomically and fixated rigidly, syndesmotic screw fixation, which can cause several complications, is usually not required for achievement of a satisfactory syndesmotic stability; this would be a recommendable option for treatment of syndesmotic injury.

Dynamic Stability Analysis of Patients with Degenerative Osteoarthritise during Walking (보행 시 퇴행성 관절염 환자의 동적 안정성 분석)

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.1
    • /
    • pp.21-30
    • /
    • 2008
  • The purpose of this study was to investigate the variability to compare local dynamic stability via a linear and nonlinear analysis during walking. Twenty four elderly males, 12 healthy elderly and 12 patients with osteoarthritise walked on a treadmill for 100 consecutive strides. Lyapunov exponent and correlation dimension and coefficient variation were calculated for the kinematic parameters to determine the dynamic stability during walking. The linear measures indicated that the healthy elderly demonstrated significantly higher variability in the ankle joint displacement. The nonlinear analysis revealed that COD for the knee joint angle were higher in patient with osteoarthritise. There were no coincidence in results between linear and nonlinear techniques over two groups. In light of nonlinear analysis, it was concluded that patients with osteoathritise showed higher local instability during walking.

Assessment of Elderly's Isokinetic Muscle Function, Flexibility and Balance in a Region of Seoul (서울 일부 지역 노인들의 등속성 근기능, 유연성, 균형성 측정 및 평가)

  • Kim, Suk-Won;Sohn, Jee-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.37-44
    • /
    • 2016
  • The aim of the present study was to compare the strength, balance, and flexibility across two age groups (older adults vs. young adults). The isokinetic muscle function, ankle ROM, trunk forward flexibility, stability, and antropometric data for the elderly and 46 university students were collected. The results indicated that male older adults possessed relatively low flexibility (2.97cm) among the groups and showed better stability in the right foot than in the left foot and $35^{\circ}$ of plantar flexion ROM, which was not in the normal range. Their peak strength at the knee joint was below 50% of their counterpart. They revealed a hamstring deficit of 18.55%, ankle eversion deficit of 23.08%, and ankle inversion deficit of 19.19%. The results indicated that female older adults possessed comparable flexibility compared to female young adults. The reciprocal muscle strength ratio of both knees was under 50%, and the deficit was 14.32% (extension) and 19.73% (flexion). The ankle plantar flexion peak torque was approximately 62% (left) and 73% (right) of WS's. The ankle dorsi flexion deficit was 25.05% and the plantar flexion was 26.86%. The eversion deficit was 19.97% and the inversion was 21.09%. These results will be significant in establishing an elderly fitness enhancement program and policy.

Effects of Heel-raise-lower with Kinesio Taping of Triceps Surae on Spasticity and Balance Ability in Patients with Chronic Stroke (종아리근육 키네시오 테이핑을 병행한 발뒤꿈치 들기 훈련이 만성 뇌졸중 환자의 강직 및 균형능력에 미치는 영향)

  • Kyung-Hun Kim
    • PNF and Movement
    • /
    • v.21 no.2
    • /
    • pp.213-222
    • /
    • 2023
  • Purpose: The purpose of this study was to investigate the effects of heel-raise-lower with Kinesio Taping (HKT) on spasticity and balance ability in patients with chronic strokes. Methods: The participants were divided randomly into the HKT group and heel-raise-lower with sham (control group), with 38 participants assigned to each group. Both groups received heel-raise-lower lifting 100 times, 5 times/week for 4 weeks. The HKT group applied Kinesio Taping to the calf muscles. The control group applied Kinesio Taping transversely to the ankle joint and tibialis anterior muscle. The composite spasticity score was used to evaluate the ankle plantar flexors. The center of pressure with the eyes open and closed and limited stability was measured using BioRescue equipment. Both groups evaluated spasticity and balance ability before the experiment and after 4 weeks. Statistical methods before and after working around spasticity and balance ability were independent t-tests. Results: After training, spasticity showed significant improvement in the HKT group and in the control group (p < 0.05). Similarly, balance ability was significantly more improved in the HKT group after 4 weeks of training compared to the control group (p < 0.05). Conclusion: We confirmed the effects of heel-raise-lower with Kinesio Taping (HKT) on spasticity and balance ability in patients with chronic strokes.