• Title/Summary/Keyword: Ankle force

Search Result 227, Processing Time 0.024 seconds

The Effects of Ankle Taping on Ankle Angular Velocity, Ground Reaction Force and Postural Stability during Jump Landing on Athlete with Functional Ankle Instability (기능적 발목 불안정성을 가진 선수에게 발목 테이핑이 점프 후 착지 시 발목 각속도, 지면반력과 자세 안정성에 미치는 영향)

  • Kim, Kyoung-Hun;Cho, Joon-Heang
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.3
    • /
    • pp.519-528
    • /
    • 2009
  • The effects of taping on the use of such measures for prevention have already been comprehensively described in the literature. However, few studies have analyzed ground reaction forces and postural stability with functional ankle instability subject during dynamic activities with ankle taping The purpose of this study was to identify the effects of ankle taping on ground reaction force and postural stability during jump landing. Fourteen players who has ankle instability were participated in this study. we used vicon and force platform. The application of taping who has ankle instability decreased DF and inversion angular velocity and peak vertical ground reaction force during landing. It also improved A-P cop, M-L cop in stability. The findings of this study support the use of taping as part of injury prevention for subject with functional ankle instability in clinical setting.

Kinetics Analysis during Stance Phase of Fore Foot Contact versus Rear Foot Contact in Running

  • Cho, Woong;Han, Jae Woong;Kim, A Young;Park, Sung Kyu;Kim, Hyung Soo
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.8 no.1
    • /
    • pp.1084-1089
    • /
    • 2017
  • The purpose of this study was to compare and analyze the difference of the ankle joint movements during landing. Seven adult males voluntarily participated in the study and the average foot size of the subjects was 269.8 mm. Image analysis equipment and the ground reaction force plate (landing type) was used to measure th kinetic variables. As a result of this study, it was confirmed that the vertical ground reaction force peak point appeared once in the barefoot with forefoot, while two peak points appeared in the barefoot and functional shoe foot with rear foot landing. About ankle angle, fore foot landing ankle angle, the average with bare foot landing was $-10.302^{\circ}$ and the average with functional shoe foot landing was $-2.919^{\circ}$. Also about rear foot landing, ankle angle was $11.648^{\circ}$ with bare foot landing and $15.994^{\circ}$ with functional shoe landing. The fore foot landing, ankle joint force analysis produced 1423.966N with barefoot and 1493.264N with functional shoes. But, the rear foot landing, ankle joint force analysis produced 1680.154N with barefoot and 1657.286N with functional shoes. This study suggest that the angle of ankle depends on the landing type and bare foot running/functionalized shod running, and ankle joint forces also depends on landing type.

Effect of Ankle Position on Hallux Flexion Force and Muscles Activity of Abductor Hallucis (발목자세가 엄지발가락 굽힘 힘과 엄지벌림근의 근활성도에 미치는 효과)

  • Jung, Doyoung
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.5 no.2
    • /
    • pp.43-50
    • /
    • 2017
  • Purpose : There is no validated method for measuring the toe flexor strength that can isolate the intrinsic muscles of the foot from the extrinsic muscles. This study compared the hallux flexion force (HFF) and muscle activity in the foot and ankle according to ankle position [plantarflexion (PF), neutral, and dorsiflexion (DF)]. Method : The study enrolled 17 subjects. In the sitting position, the HFF and activities of the abductor hallucis (AbdH), tibialis anterior (TA), and gastrocnemius (GCM) muscles were measured using a digital dynamometer and a wireless electromyography system, respectively. Subjects were instructed to flex the great toe maximally in three different ankle positions. Three 5-second trials were performed to measure the HFF and muscle activities in each condition. Repeated-measures ANOVA was used to compare the variables and paired t-tests with the Bonferroni correction were used for post-hoc pair-wise comparisons. The significance level was set at .016. Result : The HFF in DF was significantly greater than in any other ankle position (p<.01). The TA activity was greatest in ankle DF and that of the GCM was greatest in PF (both p<.01). However, there was no significant difference in AbdH activity according to ankle position. Conclusion : These results suggest that selective strength measurement of the foot intrinsic muscles in HFF should be performed with the ankle in the neutral position.

The Effect of Squat Exercise According to Ankle Angle-Toe 0°, Toe In 10°, Toe Out 10°-on Muscle Thickness and Ground Reaction Force of Vastus Medialis Oblique and Vastus Lateralis Oblique Muscles (발목각도 Toe 0°, Toe in 10°, Toe out 10°에 따른 스쿼트 운동이 안쪽넓은근과 가쪽넓은근의 근두께와 지면반발력에 미치는 영향)

  • Ahn, Su-Hong;Lee, Su-Kyong
    • PNF and Movement
    • /
    • v.18 no.1
    • /
    • pp.65-75
    • /
    • 2020
  • Purpose: The purpose of this study was to investigate the differences in muscle thickness and ground reaction force of the vastus medialis oblique and vastus lateral oblique muscles during squats at ankle angles of toe 0°, toe in 10°, and toe out 10°. Methods: In this study, 9 male and 17 female students in their 20s participated in a randomized controlled trial and were compared according to the ankle angles of toe 0°, toe in 10°, and toe out 10°. To determine the reliability and measurement of muscle thickness according to ankle angle using ultrasound equipment and muscle thickness, the participants' ankle angles-toe 0°, toe in 10°, and toe out 10°-were measured three times at the vastus medialis oblique and vastus lateralis oblique muscles during squats. At the same time, the maximum vertical ground reaction force was measured with a force plate. A total of three measurements were taken and averaged, and two minutes of squat movements were assessed between ankle angles to prevent target action. Results: The results of this study illustrated that the reliability of the vastus medialis oblique muscles and vastus lateralis oblique muscles in ankle angle was high. The difference in muscle thickness was significantly greater in comparing the toe out 10° angle with the toe 0° angle than between toe in 10° and toe out 10° in vastus medialis oblique and vastus lateralis oblique (p < 0.05). There was no statistically significant difference between the ankle angle of toe 0° and toe in 10° (p > 0.05). The maximum vertical ground reaction force was significantly greater at toe out 10° than at the ankle angle of toe 0° and toe out 10° and between toe in 10° and toe out 10° (p < 0.05). There was no statistically significant difference in the comparison between toe 0° and toe in 10° (p > 0.05). Conclusion: Squatting at an ankle angle of toe out 10° increases the dorsi flexion; thus, the stability of the ankle and the thickness of both oblique muscles increased to perform more effective squats. In addition, as the base of support widens, it is thought that the stability of the posture increases so that squat training can be performed safely.

Design of Force Sensors for the Ankle Rehabilitation Robot of Severe Stroke Patients (중증뇌졸중환자의 발목재활로봇을 위한 힘센서 설계)

  • Kim, Han-Sol;Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.148-154
    • /
    • 2016
  • This paper describes the design and fabrication of a two-axis force/torque sensor and an one-axis force sensor with parallel plate beams(PPSs) for measuring forces and torque in an ankle rehabilitation exercise using by a lower rehabilitation robot. The two-axis force/torque sensor is composed of a Fy force sensor and Tz torque sensor and the force sensor detects x direction force. The two-axis force/torque sensor and one-axis force sensor were designed using by FEM(Finite Element Method), and manufactured using strain-gages. The characteristics experiment of the two-axis force/torque sensor and one-axis force sensor were carried out respectively. As a test results, the interference error of the two-axis force/torque sensor was less than 1.56%, the repeatability error and the non-linearity of the two-axis force/torque sensor were less than 0.03% respectively, and the repeatability error and the non-linearity of the one-axis force sensor were less than 0.03% and 0.02% respectively.

Effect of Frutus gardeniae herbal acupuncture on the rat model of ankle sprain pain (치자(梔子) 약침(藥鍼)이 백서(白鼠) 모델 족과 염좌(捻挫) 통증(痛症)에 미치는 영향(影響))

  • Koo, Sung-Tae;Cho, Myoung-Soo;Park, Sung-Sub;Kim, Young-Tae;Park, Kwi-Jong;Kim, Kyoung-Sik;Sohn, In-Cheul
    • Korean Journal of Acupuncture
    • /
    • v.22 no.2
    • /
    • pp.57-74
    • /
    • 2005
  • Objective : Frutus gardeniae, seed of Gardenia jasminoides Ellis is one of the crude drugs used for the treatment of inflammatory condition in oriental medicine. Methodes : The present study aimed to examine the analgesic effect and anti-inflammatory effect of Frutus gardeniae extract (FGE) on a rat model of ankle sprain pain, and the relations between FGE-induced effect and endogenous nitric oxide (NO) and inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and c-Fos protein expression in the spinal cord. As a chronic pain model, ankle sprain pain model was used to test the effect of FCE injection applied to acupuncture point. After the induction of ankle sprain, rats subsequently showed a reduced stepping force of the affected limb for at least the next 4 days. The reduced stepping force of the limb was presumably due to a painful knee. FGE dissolved in normal saline was injected several acupoints. Results : After the treatment, behavioral tests measuring stepping force were periodically conducted during the next 8 hours. FGE produced significant improvement of stepping force of the hindlimb affected by the ankle sprain lasting at least 4 hours. FGE produced the improvement of stepping force of the affected hindlimb in a dose-dependent manner. In addition, FGE injection showed inhibitory effect on the paw edema induced by ankle sprain. Both NO production and iNOS, COX-2 protein expression increased by ankle sprain were suppressed by FGE. FGE on combination with electroacupuncture (EA) produced more powerful and longer lasting improvement of stepping force of the hindlimb affected by the ankle sprain than either FGE or EA did. The present study suggest that FGE produces a potent analgesic effect on the ankle sprain pain model of the rat and that FGE-induced analgesia modulate endogenous NO through the suppression of iNOS/COX-2 protein expression.

  • PDF

Correlation between sway magnitude and joint reaction force during postural balance control (자세 균형 제어 시 동요의 강도와 관절 반발력의 상관관계)

  • 서민좌;조원학;최현기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1160-1165
    • /
    • 2004
  • The purpose of this study was to calculate three dimensional angular displacements, moments and joint reaction forces of the ankle joint during the waist pulling, and to assess the ankle joint reaction forces according to different perturbation modes and different levels of perturbation magnitude. Ankle joint model was assumed 3-D ball and socket joint which is capable of three rotational movements. We used 6 cameras, force plate and waist pulling system. Two different waist pulling systems were adopted for forward sway with three magnitudes each. From motion data and ground reaction forces, we could calculate 3-D angular displacements, moments and joint reaction forces during the recovery of postural balance control. From the experiment using falling mass perturbation, joint moments were larger than those from the experiment using air cylinder pulling system with milder perturbation. However, JRF were similar nevertheless the difference in joint moment. From this finding, we could conjecture that the human body employs different strategies to protect joints by decreasing joint reaction forces, like using the joint movement of flexion or extension or compensating joint reaction force with surrounding soft tissues. Therefore, biomechanical analysis of human ankle joint presented in this study is considered useful for understanding balance control and ankle injury mechanism.

  • PDF

Effect of Electroacupuncture Applied to the Won Point and Rak Point in the Rat Model of Ankle Sprain Pain (원락(原絡) 배혈(配穴) 전침 자극이 백서의 족과 염좌(捻挫) 통증에 미치는 영향(影響))

  • Kim, Sun-Young;Koo, Sung-Tae;Kim, Kyoung-Sik;Sohn, In-Cheul
    • Korean Journal of Acupuncture
    • /
    • v.22 no.1
    • /
    • pp.7-21
    • /
    • 2005
  • Objectives : In the present study, the effect of electroacupuncture (EA) applied to SI6 and won-rak point on the ankle sprain model was examined. A common source of persistent pain in humans is the lateral ankle sprain. Methods : To model this condition, the rat's right ankle was bent repeatedly, overextending lateral ligaments, for 4 min under enflurane anesthesia. The rat subsequently showed swelling of the ankle and a reduced stepping force of the affected limb for the next several days. The reduced stepping force of the limb was presumably due to a painful ankle. EA was applied to the several acupuncture point on the contralateral forelimb for 30 min under gaseous anesthesia. After the termination of EA, behavioral tests measuring stepping force and Paw volume were Periodically conducted during the next 4 h and 18 h respectively. Results : EA applied to $SI_6$ with won-rak point produced more powerful improvement of stepping force of the sprained foot than to $SI_6$ alone lasting for at least 4 h. However, neigher $KI_4$ point nor $BL_{64}$ point produced any significant increase of weight bearing force. The improvement of stepping pressure was interpreted as an analgesic effect. The analgesic effect was specific to the acupuncture point since the analgesic effort on the ankle sprain pain model could not be mimicked by EA applied to $KI_4$ or $BL_{64}$. In addition, EA applied to $SI_6$ with won-rak combination point showed inhibitory effect on the paw edema induced by ankle sprain. Also, COX-2 protein expression increased by ankle sprain were suppressed by the EA stimulation. Conclusion : These data suggest that EA with won-rak combination point produces a more potent analgesic effect on the ankle sprain pain model in the rat and that EA with won-rak combination point induced anti-inflammatory effect through the suppression of COX-2 protein expression.

  • PDF

Altered Ground Reaction Forces in Individuals with Chronic Ankle Instability Compared to Lateral Ankle Sprain Copers and Healthy Controls during Walking

  • Inje Lee;Sunghe Ha;Sae Yong Lee
    • Korean Journal of Applied Biomechanics
    • /
    • v.33 no.3
    • /
    • pp.94-100
    • /
    • 2023
  • Objective: Few studies have investigated alterations of ground reaction force (GRF) in individuals with chronic ankle instability (CAI) compared with lateral ankle sprain (LAS) copers and healthy controls during walking. This study aimed to investigate differences in GRF variables among the CAI, LAS coper, and control groups. Method: Eighteen individuals with CAI, 18 LAS copers, and 18 healthy controls were recruited for this study. All participants walked on 8-m walkway with a force plate three times. GRF data during stance phase were extracted and analyzed. The analysis of variance and ensemble curve analysis were used for statistical analyses of discrete points and time-series data respectively. Results: The CAI group showed a greater loading rate (LR) and a shorter time to impact peak force than the other groups, as well as decreased vGRF from 56% to 65% in the stance phase than the control group. No significant differences were noted in the other variables. Conclusion: Based on these findings, individuals with CAI should enhance their ability to create propulsion during the push-off phase and spend more time absorbing GRF to decrease the LR, which is considered one of risk factors for overuse injury and ankle osteoarthritis.

Development of 6-axis Ankle Force/Moment Sensor for an Intelligent Foot of a Humanoid Robot (인간형 로봇의 지능형 발을 위한 6축 발목 힘/모멘트센서)

  • Kim, Gab-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.1 s.190
    • /
    • pp.27-36
    • /
    • 2007
  • This paper describes the development of 6-axis ankle force/moment sensor for the intelligent feet of a humanoid robot. When the robot walks on uneven terrain, the feet should perceive the applied forces Fx, Fy, Fz and moments Mx, My, Mz from the attached 6-axis force/moment sensor on their ankles. Papers have already been published have some disadvantages in the size of the sensor, the rated output and so on. The rated output of each component sensor (6-axis ankle force/moment sensor) is very important to design the 6-axis force/moment sensor for precision measurement. Therefore, each sensor should be designed to get the similar rated output under each rated load. Also, the size of the sensor is very important for mounting to robot's feet. Therefore, the diameter should be below 100 mm and the height should be below 40mm. In this paper, first, the structure of a 6-axis ankle force/moment sensor was modeled for a humanoid robot's feet newly, Second, the equations to predict the strains on the sensing elements was derived, third, the size of the sensing elements was designed by using the equations, then, the sensor was fabricated by attaching straingages on the sensing elements, finally, the characteristic test of the developed sensor was carried out. The rated outputs from the derived equations agree well with the results from the experiments. The interference error of the sensor is less than 2.94%.