• Title/Summary/Keyword: Ankle evertor

Search Result 5, Processing Time 0.019 seconds

Ankle Evertor Strength of Healthy Subjects in Different Ankle and Toe Positions

  • Ahn, Sun-hee;Kim, Hyun-a;Kim, Jun-hee;Kwak, Kyung-tae;Kwon, Oh-yun
    • Physical Therapy Korea
    • /
    • v.26 no.3
    • /
    • pp.84-90
    • /
    • 2019
  • Background: Ankle evertor muscles are important for preventing lateral ankle sprain. Since, the evertor muscles cross the ankle and toe joints, the position at which the ankle evertor muscle strength is measured is important. However, no studies have previously investigated the effect of ankle and toe positions on the strength of the ankle evertor muscle. Objects: This study is aimed to determine the effect of various ankle and toe joint positions on the strength of the ankle evertor muscles in healthy subjects. Methods: Eighteen healthy subjects participated in this study. Isometric ankle evertor strength of the dominant leg was determined in each subject in different ankle and toe positions (dorsiflexion (DF) with toe extension (TE), DF with toe flexion (TF), plantar flexion (PF) with TE, and PF with TF). A 2 by 2 repeated analysis of variance (ANOVA) was used to determine the difference in the evertor strength between the ankle positions (PF and DF) and toe positions (TE and TF). Results: The results indicate that there was no significant ankle position by toe position interaction effect (p=.83). However, the ankle evertor strength was significantly increased in the ankle DF position than in the PF position (p<.01), and the ankle evertor strength during eversion with TE was significantly higher than eversion with TF (p<.01). Conclusion: The findings of this study suggest that clinicians should consider the ankle and toe positions when measuring the muscle strength and during performance of selective muscle strengthening exercises of the ankle evertor muscles.

Different Biomechanical Characteristics in Proprioception, Muscle Strength, and Time to Peak Torque at Velocity of 300°/sec of the Ankle Joint in People With or Without Functional Ankle Instability (각속도 300°/sec에서 기능적 발목불안 유무에 따른 고유수용성감각, 발목 근력, 그리고 최고 회전력까지 걸리는 시간의 생체역학적 특성 차이)

  • Park, Eun-Young;Kim, Won-Ho
    • Physical Therapy Korea
    • /
    • v.20 no.3
    • /
    • pp.45-53
    • /
    • 2013
  • The purpose of this study was to examine the differentiation of proprioception, invertor and evertor muscle strength, and time to peak torque at a velocity of $300^{\circ}/sec$ of the ankle joint in people with or without functional ankle instability (FAI). Nineteen subjects with a history of ankle sprain participated. All subjects were divided into FAI group ($n_1=9$, Cumberland ankle instability tool (CAIT)${\leq}24$) and a control group ($n_2=10$) based on their CAIT scores. Isokinetic dynamometer was used to measure the sense of active joint position of the ankle at mid-range and end-range of an inversion motion and invertor as well as the evertor muscle strength and time to peak torque at $300^{\circ}/s$. The FAI group showed a statistically reduction in invertor and evertor muscle strength and time to peak torque when compared to the control group (p<.05). Muscle strength and time to peak torque of the invertor and evertor, as well as the sense of active joint position at end-range were also lower in the FAI group than in the control (p<.05). Correlations between CAIT score and position sense at end-range (r=-.577) and invertor muscle strength (r=.554) were statistically significant (p<.05). Individuals with FAI showed reduction in invertor and evertor muscle strength and recruitment time as well as in proprioception of the ankle joint. Thus, proprioception and invertor and evertor muscle strength of the ankle joint at fast angular velocity may be investigated when examining and planning care for individuals with FAI.

A study of Ankle flexibility and Isokinetic Muscular strength between Chronic ankle sprain and Normal dancers (만성 발목관절 염좌인 무용수와 정상인 무용수의 유연성과 등속성 근력 비교연구)

  • Lee, In-hak;;Lee, Hyeon-Wook;Han, Sang-Wan
    • The Journal of Korean Physical Therapy
    • /
    • v.13 no.3
    • /
    • pp.735-749
    • /
    • 2001
  • The purpose of this study was to compare the flexibility and isokinetic differences between normal dancers and dancers with chronically sprained ankle. For the experiment Eversion/Inversion testing was performed by a Cybex 770 isokinetic dynamometer at the a speeds of 30$^{\circ}$ /sec and 120$^{\circ}$ /sec on each 7 subject group. The results were; 1) No differences were found between the two groups in ROM of ankle, but ROM of eversion has 2.8$^{\circ}$ higher in the injury group than the normal group. 2) Differences were found between the two groups in peak torque. average power, total work at the evertor and invertor in injury side.(30$^{\circ}$ /sec) 3) Differences were found between the two groups in peak torque at the evertor and invertor in normal side.(30$^{\circ}$ /sec) 4) Differences were found between the two groups in total work at the evertor in normal side. (30$^{\circ}$ /sec) 5) Differences were found between the two groups in peak torque, total work at the evertor and invertor in injury side. (120$^{\circ}$ /sec)

  • PDF

Peroneal Muscle and Biceps Femoris Muscle Activation During Eversion With and Without Plantarflexion in Sitting and Side-lying Postures

  • Do-eun Lee;Jun-hee Kim;Seung-yoon Han;Oh-yun Kwon
    • Physical Therapy Korea
    • /
    • v.31 no.1
    • /
    • pp.18-28
    • /
    • 2024
  • Background: Lateral instability of the ankle is one of the most common causes of musculoskeletal ankle injuries. The peroneus longus (PL) and peroneus brevis (PB) contribute to ankle stability. In early rehabilitation, isometric exercises have been selected for improvement of ankle stability. To effectively train the peroneal muscles during eversion, it is important to consider ankle and body posture. Objects: This study aimed to compare activation of the PL, PB, and biceps femoris (BF) muscles during eversion in different ankle postures (neutral [N], plantarflexed [PF]) and body postures (sitting and side-lying). Methods: Thirty healthy individuals with no history of lateral ankle sprains within the last 6 months were included in the study. Maximal isometric strength of eversion and muscle activation were measured simultaneously. Muscle activation at submaximal eversion was divided by the highest value obtained from maximal isometric eversion among the four postures (percent maximal voluntary isometric contraction [%MVIC]). To examine the differences in muscle activation depending on posture, a 2 × 2 repeated measures analysis of variance (ANOVA) was conducted. Results: There were significant interaction effects of ankle and body postures on PL muscle activation and evertor strength (p < 0.05). The PL muscle activation showed a significantly greater difference in the side-lying and PF conditions than in the sitting and N conditions (p < 0.05). Evertor strength was greater in the N compared to the PF condition regardless of body posture (p < 0.05). In the case of PB and BF muscle activation, only the main effects of ankle and body posture were observed (p < 0.05). Conclusion: Among the four postures, the side-lying-PF posture produced the highest muscle activation. The side-lying-PF posture may be preferred for effective peroneal muscle exercises, even when considering the BF muscle.

Lower Extremity Muscle Activity while Wearing High-heeled Shoes under Various Situations: A Therapeutic Perspective

  • Kim, Yu-Shin;Lim, Jong-Min;Ko, Na-Yeon;Yoon, Bum-Chul
    • The Journal of Korean Physical Therapy
    • /
    • v.23 no.3
    • /
    • pp.49-56
    • /
    • 2011
  • Purpose: To evaluate changes in lower extremity muscle activity caused by high heeled shoe wearing during normal, brisk, and upslope walking. Methods: Twenty healthy young women (age, $23.9{\pm}2.47$) participated in this study. Muscle activities of the tibialis anterior, peroneus longus, gastrocnemius lateralis, gastrocnemius medialis, soleus, hamstring, vastus lateralis, and vastus medialis while walking normally, walking briskly, and walking up a slope. Results: When walking normally, the peroneus longus, gastrocnemius lateralis, soleus, and vastus lateralis evidenced higher activity when high-heeled shoes were worn (p<0.05). During brisk walking, the peroneus longus and gastrocnemius lateralis exhibited higher activity (p<0.05). Although the peroneus longus and vastus lateralis exhibited higher activity when walking up an incline with high-heeled shoes, the activity levels of the tibialis anterior and gastrocnemius medialis were lower (p<0.05). Conclusion: The results of this study demonstrate that increased heel height substantially reduces muscle effort when walking up a slope. From a therapeutic perspective, it is possible that using high heeled shoes over a short period might enhance muscle activity of ankle evertor, although it can cause mediolateral muscle imbalances in the lower extremities.