• 제목/요약/키워드: Ankle Muscle Fatigue

검색결과 32건 처리시간 0.021초

Effects of Factors on Response Variables Lap Time and Lower Extremity Range of Motion in Bobsleigh Start using Bobsleigh Shoes for the 2018 PyeongChang Winter Olympics

  • Park, Seungbum;Lee, Kyungdeuk;Kim, Daewoong;Yoo, Junghyeon;Jung, Jaemin;Park, Kyunghwan
    • 한국운동역학회지
    • /
    • 제27권3호
    • /
    • pp.219-227
    • /
    • 2017
  • Objective: The aim of this study was to analyze the effects of bobsleigh shoes on the lower extremity range of motion and start speed lap time and to develop bobsleigh shoes suitable for winter environments and Korean players based on sports science and optimized biomechanical performance. Background: The bobsleigh shoes used in the start section of the sport are one of the most important equipment for improving athletes' performances. Despite the importance of the start section, there are no shoes that are specifically designed for Korean bobsleigh athletes. Thus, Korean athletes have to wear sprint spike shoes instead of bobsleigh shoes to practice the start. Method: The subjects included four bobsleigh athletes from the Gangwon Province Bobsleigh Skeleton Federation. The study selected the bobsleigh shoe type A (company A) and type B (company B). We analyzed the lower extremity range of motion and sprint time (start line to 10 m) using a Motion Analysis System (USA). Results: In the measurement of the time required for the bobsleigh start section (10 m), the type A shoes demonstrated the fastest section record by $2.765{\pm}0.086sec$ and yielded more efficient movements, hip and knee flexion, hip extension, ankle dorsiflexion, plantar flexion, and inversion than the type B shoes. Conclusion: Type A shoes can yield a better performance via effective lower extremity movements in the bobsleigh start section. Application: In the future, functional analysis should be conducted by comparing the upper material properties, comfort, and muscle fatigue of bobsleigh shoes based on the Type A shoes to develop such shoes suitable for Koreans.

Ergonomic Evaluation of Workload in Imbalanced Lower Limbs Postures

  • Kim, Eun-Sik;Yoon, Hoon-Yong
    • 대한인간공학회지
    • /
    • 제30권5호
    • /
    • pp.671-681
    • /
    • 2011
  • Objective: The purpose of this study is to compare the workload level at each lower limbs posture and suggest the ergonomic workstation guideline for working period by evaluating the imbalanced lower limbs postures from the physiological and psychophysical points of view. Background: Many workers like welders are working in various imbalanced lower limbs postures either due to the narrow working conditions or other environmental conditions. Method: Ten male subjects participated in this experiment. Subjects were asked to maintain 3 different lower limbs postures(standing, squatting and bending) with 3 different working conditions(balanced floor with no scaffold, imbalanced floor with 10cm height of scaffold, and imbalanced floor with 20cm height of scaffold). EMG data for the 4 muscle groups(Retus Femoris, Vastus Lateralis, Tibialis Anterior, Gastrocnemius) from each lower limbs posture were collected for 20 seconds every 2 minutes during the 8 minutes sustaining task. Subjects were also asked to report their discomfort ratings of body parts such as waist, upper legs, lower legs, and ankle. Results: The ANOVA results showed that the EMG root mean square(RMS) values and the discomfort ratings(CR-10 Rating Scale) were significantly affected by lower limbs postures and working time(p<0.05). The correlation was analyzed between the EMG data and the discomfort ratings. Also, prediction models for the discomfort rating for each posture were developed using physical condition, working time, and scaffold height. Conclusion: We strongly recommend that one should not work more than 6 minutes in a standing or squatting postures and should not work more than 4 minutes in a bending posture. Application: The results of this study could be used to design and assess working environments and methods. Furthermore, these results could be used to suggest ergonomic guidelines for the lower limbs postures such as squatting and bending in the working fields in order to prevent fatigue and pain in the lower limbs body.