• Title/Summary/Keyword: Anisotropic elastic constant

Search Result 16, Processing Time 0.031 seconds

Effect of Anisotropic Ratio for Rayleigh Wave of a Half-Infinite Composite Material (반 무한 복합체의 Rayleigh 표면파에 대한 이방성비의 영향)

  • Baek, Un-Cheol;Hwang, Jae-Seok;Song, Yong-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.502-509
    • /
    • 2001
  • In this paper, when stress waves are propagated along the reinforced direction of the composite, the characteristic equation of Rayleigh wave is derived. The relationships between velocities of stress waves and Rayleigh wave are studied for anisotropic ratios(E(sub)11/E(sub)12 or E(sub)22/E(sub)11). The increments of anisotropic ratios is made by using known material properties and being constant of basic properties. When the anisotropic ratios are increased, Rayleigh wave velocities to the shear wave velocities are almost equal to 1 with any anisotropic ratios. Rayleigh wave velocities to the longitudinal wave velocities and Shear wave velocities ratio to the longitudinal wave velocities are almost identical each other, they are between 0.12 and 0.21. When the anisotropic ration is very high, that is, E(sub)11/E(sub)22=46.88, Rayleigh wave velocities and the shear wave velocities are almost constant with Poissons ratio, longitudinal wave velocities are very slowly increased with the increments of Poissons ratios. When E(sub)11(elastic modulus of the reinforced direction)and ν(sub)12 are constant, Rayleigh wave velocities and the shear wave velocities are steeply decreased with the increments of anisotropic ratios and the velocities of longitudinal wave are almost constant with them. When E(sub)22(elastic modulus of the normal direction to the fiber) and ν(sub)12 are constant, Rayeigh wave velocities is slowly increased with the increments of anisotropic ratios, the shear wave velocities are almost constant with them, the longitudinal wave velocities are steeply increased with them.

축변환 구성방정식을 이용한 암석 이방성 탄성계수 산정

  • 김영수;이재호;허노영;박영화;최정호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.729-736
    • /
    • 2000
  • For nonhomogeneous and anisotropic rocks such as schist, shale, etc, a method to determine the anisotropic elastic constants was proposed. Many authors have investigated in detail the behavior elastic constants of anisotropy rocks(Pinto 1970, Amadei 1983, 1992, Amadei & Savage 1989). They concluded that equations of elastic constants E$_1$, E$_2$ and G$_2$ can be derived from the measured strains in arbitrary three directions. And, modulus of elasticity varies according to the inclination of discontinuity in specimens. If we attach three strain gages in accordance with the directions of anisotropy on the rock specimen under uni-axial compression and diametral compression tests, anisotropy elastic constants can be determined by these equations. With this method, the degree of anisotropy will be easily evaluated by simple laboratory test. This paper presents the results of elastic constants due to the angle of bedding planes of anisotropic rock, such as shale, in uni-axial compression and diametral compression tests

  • PDF

Analysis of Effective Anisotropic Elastic Constants and Low-Velocity Impact of Biomimetic Multilayer Structures (생체구조를 모방한 다층복합재료의 이방성 유효탄성계수 및 저속 충격 해석)

  • Lee, Jong-Won;Beom, Hyeon-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.11
    • /
    • pp.1245-1255
    • /
    • 2012
  • Effective elastic constants of biomimetic multilayer structures with hierarchical structures are evaluated based on the potential energy balance method. The effective anisotropic elastic constants are used in analyzing low-velocity impact of biomimetic multilayer structures consisting of mineral and protein. It is shown that displacements of biomimetic multilayer structures strongly depend on the volume fraction of mineral and hierarchical level. The effect of the volume fraction of mineral and hierarchical level on the contact force and stresses at the impact point are also discussed.

Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles

  • Karami, Behrouz;Janghorban, Maziar;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.27 no.2
    • /
    • pp.201-216
    • /
    • 2018
  • In this paper, three-dimensional (3D) elasticity theory in conjunction with nonlocal strain gradient theory (NSGT) is developed for mechanical analysis of anisotropic nanoparticles. The present model incorporates two scale coefficients to examine the mechanical characteristics much accurately. All the elastic constants are considered and assumed to be the functions of (r, ${\theta}$, ${\varphi}$), so all kind of anisotropic structures can be modeled. Moreover, all types of functionally graded spherical structures can be investigated. To justify our model, our results for the radial vibration of spherical nanoparticles are compared with experimental results available in the literature and great agreement is achieved. Next, several examples of the radial vibration and wave propagation in spherical nanoparticles including nonlocal strain gradient parameters are presented for more than 10 different anisotropic nanoparticles. From the best knowledge of authors, it is the first time that 3D elasticity theory and NSGT are used together with no approximation to derive the governing equations in the spherical coordinate. Moreover, up to now, the NSGT has not been used for spherical anisotropic nanoparticles. It is also the first time that all the 36 elastic constants as functions of (r, ${\theta}$, ${\varphi}$) are considered for anisotropic and functionally graded nanostructures including size effects. According to the lack of any common approximations in the displacement field or in elastic constant, present theory can be assumed as a benchmark for future works.

Measurement of High Temperature Anisotropic Elastic Constants of Zr-2.5Nb Pressure Tube Materials by Resonant Ultrasound Spectroscopy (초음파공명분광법에 의한 Zr-2.5Nb 압력관 재료의 고온 이방성 탄성계수 측정)

  • Cheong, Yong-Moo;Kim, Sung-Soo;Kim, Young-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.2
    • /
    • pp.140-148
    • /
    • 2002
  • Anisotropic elastic constants of Zr-2.5Nb pressure tube materials were determined by a high temperature resonant ultrasound spectroscopy (RUS). The resonant frequencies were measured using alumina wave-guides and wide band ultrasonic transducers in a small furnace. The rectangular parallelepiped specimens were fabricated along with the axial, radial and circumferential direction of the pressure tube. A nine elastic stiffness tensor for orthotropic symmetry was determined in the range of room temperature ${\sim}500^{\circ}C$. As the temperature increases, the elastic constant tensor, cij gradually decreases. Higher elastic constants along the transverse direction compared to those along the axial or radial direction are similar to the case of Young's modulus or shear modulus. A crossing of shear elastic constants along axial direction and radial direction was observed near $150^{\circ}C$. This fact corresponds to the crossing of c44 and c66 of single crystal zirconium.

Numerical Analysis of Effective Elastic Constants of Bone-Like Biocomposites (뼈와 유사한 생체복합재료의 유효탄성계수에 대한 수치해석)

  • Lee, Do-Ryun;Beom, Hyeon-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.11
    • /
    • pp.1288-1296
    • /
    • 2011
  • Effective elastic constants of bone-like biocomposites are investigated numerically. The bone-like materials are composed of strong layers and weak layers, and hierarchically structured. The unit cell model is employed to obtain the effective elastic constants. The effective anisotropic elastic constants of bone-like composites are obtained by using the potential energy method and finite element analysis. The effects of the Poisson's ratio, elastic modulus, hierarchical level, volume fraction and aspect ratio of the strong layer composed of the composites on the effective elastic constants are discussed.

Effects of triaxial magnetic field on the anisotropic nanoplates

  • Karami, Behrouz;Janghorban, Maziar;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.361-374
    • /
    • 2017
  • In this study, the influences of triaxial magnetic field on the wave propagation behavior of anisotropic nanoplates are studied. In order to include small scale effects, nonlocal strain gradient theory has been implemented. To study the nanoplate as a continuum model, the three-dimensional elasticity theory is adopted in Cartesian coordinate. In our study, all the elastic constants are considered and assumed to be the functions of (x, y, z), so all kind of anisotropic structures such as hexagonal and trigonal materials can be modeled, too. Moreover, all types of functionally graded structures can be investigated. eigenvalue method is employed and analytical solutions for the wave propagation are obtained. To justify our methodology, our results for the wave propagation of isotropic nanoplates are compared with the results available in the literature and great agreement is achieved. Five different types of anisotropic structures are investigated in present paper and then the influences of wave number, material properties, nonlocal and gradient parameter and uniaxial, biaxial and triaxial magnetic field on the wave propagation analysis of anisotropic nanoplates are presented. From the best knowledge of authors, it is the first time that three-dimensional elasticity theory and nonlocal strain gradient theory are used together with no approximation to derive the governing equations. Moreover, up to now, the effects of triaxial magnetic field have not been studied with considering size effects in nanoplates. According to the lack of any common approximations in the displacement field or in elastic constant, present theory has the potential to be used as a bench mark for future works.

Anisotropic continuum damage analysis of thin-walled pressure vessels under cyclic thermo-mechanical loading

  • Surmiri, Azam;Nayebi, Ali;Rokhgireh, Hojjatollah;Varvani-Farahani, Ahmad
    • Structural Engineering and Mechanics
    • /
    • v.75 no.1
    • /
    • pp.101-108
    • /
    • 2020
  • The present study intends to analyze damage in thin-walled steel cylinders undergoing constant internal pressure and thermal cycles through use of anisotropic continuum damage mechanics (CDM) model coupled with nonlinear kinematic hardening rule of Chaboche. Materials damage in each direction was defined based on plastic strain and its direction. Stress and strain distribution over wall-thickness was described based on the CDM model and the return mapping algorithm was employed based on the consistency condition. Plastic zone expansion across the wall thickness of cylinders was noticeably affected with change in internal pressure and temperature gradients. Expansion of plastic zone over wall-thickness at inner and outer surfaces and their boundaries demarking elastic and plastic regions was attributed to the magnitude of damage induced over thermomechanical cycles on the thin-walled samples tested at various pressure stresses.

Mode III Dynamic Interfacial Crack in Bonded Anisotropic Strip Under Anti-Plane Deformation (이방성재료 접합 띠판에 대한 면외 동적계면균열)

  • Park, Jae-Wan;Choi, Sung-Ryul
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.111-116
    • /
    • 2000
  • A semi-infinite interfacial crack propagated with constant velocity in two bonded anisotropic strip under out-of-plane clamped displacements is analyzed. The asymptotic stress and displacement fields near the crack tip are obtained, where the results get more general expressions applicable not only to isotropic/orthotropic materials but also to the extent of the anisotropic material having one plane of elastic symmetry for the interfacial crack. The dynamic stress intensity factor is obtained as a closed form, which is decreased as the velocity of crack propagation increases. The critical velocity where the stress intensity factor comes to zero is obtained, which agrees with the lower value between the critical values of parallel crack merged in the material 1 and 2 adjacent to the interface. The dynamic energy release rate is also obtained as a form related to the stress intensity factor.

  • PDF

Parallel Crack with Constant Velocity in Two Bonded Anisotropic Strip Under Anti-Plane Deformation (두 이방성 띠판에 내재된 면외변형하의 등속평행 균열)

  • Park, Jae-Wan;Kim, Nam-Hun;Choe, Seong-Ryeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.496-505
    • /
    • 2000
  • A semi-infinite parallel crack propagated with constant velocity in two bonded anisotropic strip under anti-plane clamped displacement is analyzed. Using Fourier integral transform a Wiener-Hopf equation is derived. By solving this equation the asymptotic stress and displacement fields near the crack tip are determined, where the results give the more general expression applicable to the extent of the anisotropic material having one plane of elastic symmetry for the parallel crack. The dynamic stress intensity factor and energy release rate are also obtained as a closed form, which are the results applicable to the problem both of dynamic and static crack under the same geometry as this study. The stress intensity factor approaches zero at the critical crack velocity which is less than the shear wave velocity, but in typical case of isotropic or orthotropic material agrees with the velocity of shear wave. Also a circular shear stress around crack tip is considered, from which the stress is shown to be approximately symmetric about the horizontal axis. Referring to the maximum stress criteria, it could be shown that a brenched crack is formed by crack growth as crack velocity increases.